IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v27y2022i1d10.1007_s13253-021-00472-0.html
   My bibliography  Save this article

Generalized Fiducial Inference for Threshold Estimation in Dose–Response and Regression Settings

Author

Listed:
  • Seungyong Hwang

    (University of California at Davis)

  • Randy C. S. Lai

    (University of California at Davis)

  • Thomas C. M. Lee

    (University of California at Davis)

Abstract

In many biomedical experiments, such as toxicology and pharmacological dose–response studies, one primary goal is to identify a threshold value such as the minimum effective dose. This paper applies Fisher’s fiducial idea to develop an inference method for these threshold values. In addition to providing point estimates, this method also offers confidence intervals. Another appealing feature of the proposed method is that it allows the use of multiple parametric relationships to model the underlying pattern of the data and hence, reduces the risk of model mis-specification. All these parametric relationships satisfy the qualitative assumption that the response and dosage relationship is monotonic after the threshold value. In practice, this assumption may not be valid but is commonly used in dose–response studies. The empirical performance of the proposed method is illustrated with synthetic experiments and real data applications. When comparing to existing methods in the literature, the proposed method produces superior results in most synthetic experiments and real data sets. Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Seungyong Hwang & Randy C. S. Lai & Thomas C. M. Lee, 2022. "Generalized Fiducial Inference for Threshold Estimation in Dose–Response and Regression Settings," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 109-124, March.
  • Handle: RePEc:spr:jagbes:v:27:y:2022:i:1:d:10.1007_s13253-021-00472-0
    DOI: 10.1007/s13253-021-00472-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-021-00472-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-021-00472-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Hannig & Thomas C. M. Lee, 2009. "Generalized fiducial inference for wavelet regression," Biometrika, Biometrika Trust, vol. 96(4), pages 847-860.
    2. Randy C. S. Lai & Jan Hannig & Thomas C. M. Lee, 2015. "Generalized Fiducial Inference for Ultrahigh-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 760-772, June.
    3. A. Mallik & B. Sen & M. Banerjee & G. Michailidis, 2011. "Threshold estimation based on a p-value framework in dose-response and regression settings," Biometrika, Biometrika Trust, vol. 98(4), pages 887-900.
    4. Jan Hannig & Hari Iyer & Randy C. S. Lai & Thomas C. M. Lee, 2016. "Generalized Fiducial Inference: A Review and New Results," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1346-1361, July.
    5. Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
    6. Hannig, Jan & Lai, Randy C.S. & Lee, Thomas C.M., 2014. "Computational issues of generalized fiducial inference," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 849-858.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Suofei & Hannig, Jan & Lee, Thomas C.M., 2022. "Uncertainty quantification for honest regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    2. Piero Veronese & Eugenio Melilli, 2021. "Confidence Distribution for the Ability Parameter of the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 131-166, March.
    3. Veronese, Piero & Melilli, Eugenio, 2018. "Some asymptotic results for fiducial and confidence distributions," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 98-105.
    4. Ionut Bebu & George Luta & Thomas Mathew & Brian K. Agan, 2016. "Generalized Confidence Intervals and Fiducial Intervals for Some Epidemiological Measures," IJERPH, MDPI, vol. 13(6), pages 1-13, June.
    5. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    6. Hsin-I Lee & Hungyen Chen & Hirohisa Kishino & Chen-Tuo Liao, 2016. "A Reference Population-Based Conformance Proportion," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 684-697, December.
    7. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    8. Nancy Reid & David R. Cox, 2015. "On Some Principles of Statistical Inference," International Statistical Review, International Statistical Institute, vol. 83(2), pages 293-308, August.
    9. Eugenio Melilli & Piero Veronese, 2024. "Confidence distributions and hypothesis testing," Statistical Papers, Springer, vol. 65(6), pages 3789-3820, August.
    10. Shin-Fu Tsai, 2019. "Comparing Coefficients Across Subpopulations in Gaussian Mixture Regression Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 610-633, December.
    11. David R. Bickel, 2014. "Small-scale Inference: Empirical Bayes and Confidence Methods for as Few as a Single Comparison," International Statistical Review, International Statistical Institute, vol. 82(3), pages 457-476, December.
    12. Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
    13. Gunnar Taraldsen, 2023. "The Confidence Density for Correlation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 600-616, February.
    14. Piero Veronese & Eugenio Melilli, 2015. "Fiducial and Confidence Distributions for Real Exponential Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 471-484, June.
    15. Michael P. Fay & Michael A. Proschan & Erica Brittain, 2015. "Combining one-sample confidence procedures for inference in the two-sample case," Biometrics, The International Biometric Society, vol. 71(1), pages 146-156, March.
    16. Delbianco Fernando & Tohmé Fernando, 2023. "What is a relevant control?: An algorithmic proposal," Asociación Argentina de Economía Política: Working Papers 4643, Asociación Argentina de Economía Política.
    17. Guang Yang & Dungang Liu & Junyuan Wang & Min‐ge Xie, 2016. "Meta‐analysis framework for exact inferences with application to the analysis of rare events," Biometrics, The International Biometric Society, vol. 72(4), pages 1378-1386, December.
    18. Li, Xinmin & Wang, Juan & Liang, Hua, 2011. "Comparison of several means: A fiducial based approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1993-2002, May.
    19. Russell J. Bowater, 2017. "A defence of subjective fiducial inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 177-197, April.
    20. Gunnar Taraldsen & Jarle Tufto & Bo H. Lindqvist, 2022. "Improper priors and improper posteriors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 969-991, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:27:y:2022:i:1:d:10.1007_s13253-021-00472-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.