IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v197y2024ics0167947324000598.html
   My bibliography  Save this article

Transfer learning via random forests: A one-shot federated approach

Author

Listed:
  • Xiang, Pengcheng
  • Zhou, Ling
  • Tang, Lu

Abstract

A one-shot federated transfer learning method using random forests (FTRF) is developed to improve the prediction accuracy at a target data site by leveraging information from auxiliary sites. Both theoretical and numerical results show that the proposed federated transfer learning approach is at least as accurate as the model trained on the target data alone regardless of possible data heterogeneity, which includes imbalanced and non-IID data distributions across sites and model mis-specification. FTRF has the ability to evaluate the similarity between the target and auxiliary sites, enabling the target site to autonomously select more similar site information to enhance its predictive performance. To ensure communication efficiency, FTRF adopts the model averaging idea that requires a single round of communication between the target and the auxiliary sites. Only fitted models from auxiliary sites are sent to the target site. Unlike traditional model averaging, FTRF incorporates predicted outcomes from other sites and the original variables when estimating model averaging weights, resulting in a variable-dependent weighting to better utilize models from auxiliary sites to improve prediction. Five real-world data examples show that FTRF reduces the prediction error by 2-40% compared to methods not utilizing auxiliary information.

Suggested Citation

  • Xiang, Pengcheng & Zhou, Ling & Tang, Lu, 2024. "Transfer learning via random forests: A one-shot federated approach," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000598
    DOI: 10.1016/j.csda.2024.107975
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000598
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.