IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p1670-1685.html
   My bibliography  Save this article

Marginal proportional hazards models for clustered interval‐censored data with time‐dependent covariates

Author

Listed:
  • Kaitlyn Cook
  • Wenbin Lu
  • Rui Wang

Abstract

The Botswana Combination Prevention Project was a cluster‐randomized HIV prevention trial whose follow‐up period coincided with Botswana's national adoption of a universal test and treat strategy for HIV management. Of interest is whether, and to what extent, this change in policy modified the preventative effects of the study intervention. To address such questions, we adopt a stratified proportional hazards model for clustered interval‐censored data with time‐dependent covariates and develop a composite expectation maximization algorithm that facilitates estimation of model parameters without placing parametric assumptions on either the baseline hazard functions or the within‐cluster dependence structure. We show that the resulting estimators for the regression parameters are consistent and asymptotically normal. We also propose and provide theoretical justification for the use of the profile composite likelihood function to construct a robust sandwich estimator for the variance. We characterize the finite‐sample performance and robustness of these estimators through extensive simulation studies. Finally, we conclude by applying this stratified proportional hazards model to a re‐analysis of the Botswana Combination Prevention Project, with the national adoption of a universal test and treat strategy now modeled as a time‐dependent covariate.

Suggested Citation

  • Kaitlyn Cook & Wenbin Lu & Rui Wang, 2023. "Marginal proportional hazards models for clustered interval‐censored data with time‐dependent covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 1670-1685, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1670-1685
    DOI: 10.1111/biom.13787
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13787
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard E. Chandler & Steven Bate, 2007. "Inference for clustered data using the independence loglikelihood," Biometrika, Biometrika Trust, vol. 94(1), pages 167-183.
    2. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    3. Lloyd A. Mancl & Timothy A. DeRouen, 2001. "A Covariance Estimator for GEE with Improved Small‐Sample Properties," Biometrics, The International Biometric Society, vol. 57(1), pages 126-134, March.
    4. Zhang, Xinyan & Sun, Jianguo, 2010. "Regression analysis of clustered interval-censored failure time data with informative cluster size," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1817-1823, July.
    5. Harden, Jeffrey J. & Kropko, Jonathan, 2019. "Simulating Duration Data for the Cox Model," Political Science Research and Methods, Cambridge University Press, vol. 7(4), pages 921-928, October.
    6. William B. Goggins & Dianne M. Finkelstein, 2000. "A Proportional Hazards Model for Multivariate Interval-Censored Failure Time Data," Biometrics, The International Biometric Society, vol. 56(3), pages 940-943, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengzhu Yu & Mingyue Du, 2022. "Regression Analysis of Multivariate Interval-Censored Failure Time Data under Transformation Model with Informative Censoring," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    2. Costa, Rui J. & Wilkinson-Herbots, Hilde M., 2021. "Inference of gene flow in the process of speciation: Efficient maximum-likelihood implementation of a generalised isolation-with-migration model," Theoretical Population Biology, Elsevier, vol. 140(C), pages 1-15.
    3. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    4. Chen, Ling & Sun, Jianguo, 2010. "A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1109-1116, April.
    5. Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
    6. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    7. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.
    8. Westgate, Philip M., 2013. "A bias-corrected covariance estimator for improved inference when using an unstructured correlation with quadratic inference functions," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1553-1558.
    9. You-Gan Wang & Yuning Zhao, 2007. "A Modified Pseudolikelihood Approach for Analysis of Longitudinal Data," Biometrics, The International Biometric Society, vol. 63(3), pages 681-689, September.
    10. Haiyan Wang & Michael Akritas, 2010. "Inference from heteroscedastic functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 149-168.
    11. Paniagua, Victoria, 2022. "When clients vote for brokers: How elections improve public goods provision in urban slums," World Development, Elsevier, vol. 158(C).
    12. Galea, Manuel & de Castro, Mário, 2017. "Robust inference in a linear functional model with replications using the t distribution," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 134-145.
    13. Hung‐pin Lai & Subal C. Kumbhakar, 2020. "Estimation of a dynamic stochastic frontier model using likelihood‐based approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 217-247, March.
    14. Joan Barceló & Robert Kubinec & Cindy Cheng & Tiril Høye Rahn & Luca Messerschmidt, 2022. "Windows of repression: Using COVID-19 policies against political dissidents?," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(1), pages 73-89, January.
    15. Mevin Hooten & Christopher Wikle & Michael Schwob, 2020. "Statistical Implementations of Agent‐Based Demographic Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 441-461, August.
    16. Blanco-Fernández, Angela & Corral, Norberto & González-Rodríguez, Gil, 2011. "Estimation of a flexible simple linear model for interval data based on set arithmetic," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2568-2578, September.
    17. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    18. David B. Dunson & Gregg E. Dinse, 2002. "Bayesian Models for Multivariate Current Status Data with Informative Censoring," Biometrics, The International Biometric Society, vol. 58(1), pages 79-88, March.
    19. Chun Yin Lee & Kin Yau Wong & Kwok Fai Lam & Dipankar Bandyopadhyay, 2023. "A semiparametric joint model for cluster size and subunit‐specific interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2010-2022, September.
    20. Michael Eichinger & Tatiana Görig & Sabine Georg & Dorle Hoffmann & Diana Sonntag & Heike Philippi & Jochem König & Michael S. Urschitz & Freia De Bock, 2022. "Evaluation of a Complex Intervention to Strengthen Participation-Centred Care for Children with Special Healthcare Needs: Protocol of the Stepped Wedge Cluster Randomised PART-CHILD Trial," IJERPH, MDPI, vol. 19(24), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1670-1685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.