IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i12p4590-4600.html
   My bibliography  Save this article

Negative binomial mixed models for analysis of stuttering rates

Author

Listed:
  • Jones, Mark
  • Dobson, Annette
  • Onslow, Mark
  • Carey, Brenda

Abstract

Stuttering involves disruptions to normal verbal behavior. The rate that these disruptions occur within individuals who stutter varies across time and also with speaking situation. Therefore multiple samples of speech are commonly taken from individuals, in an attempt to obtain a realistic estimate of the severity of their condition. Stuttering rates are commonly reported as the proportion of syllables stuttered. Traditionally, general linear models have been used to analyze and compare stuttering rates. However, the distribution of this type of data is not normal, the duration of the individual speech samples is not usually taken into account, and repeated measurements on individuals are often aggregated prior to analysis. We propose that these issues can be resolved by using a negative binomial mixed model approach. In this paper, we argue why this is sensible and then show that the model is practical to implement, drawing on data from two randomized controlled trials of interventions for treatment of stuttering. We also show how to estimate sample size for our proposed model based on a negative binomial distribution.

Suggested Citation

  • Jones, Mark & Dobson, Annette & Onslow, Mark & Carey, Brenda, 2009. "Negative binomial mixed models for analysis of stuttering rates," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4590-4600, October.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4590-4600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00268-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph Hilbe, 1994. "Negative binomial regression," Stata Technical Bulletin, StataCorp LP, vol. 3(18).
    2. Lloyd A. Mancl & Timothy A. DeRouen, 2001. "A Covariance Estimator for GEE with Improved Small‐Sample Properties," Biometrics, The International Biometric Society, vol. 57(1), pages 126-134, March.
    3. Aban, Inmaculada B. & Cutter, Gary R. & Mavinga, Nsoki, 2009. "Inferences and power analysis concerning two negative binomial distributions with an application to MRI lesion counts data," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 820-833, January.
    4. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    5. James W. Hardin & Joseph W. Hilbe, 2012. "Generalized Linear Models and Extensions, 3rd Edition," Stata Press books, StataCorp LP, edition 3, number glmext, March.
    6. Roger Newson, 2004. "Generalized power calculations for generalized linear models and more," Stata Journal, StataCorp LP, vol. 4(4), pages 379-401, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellmann Lutz & Gerner Hans-Dieter, 2012. "Further Training and Company-Level Pacts for Employment in Germany," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(2), pages 98-115, April.
    2. Giuliani, Elisa & Martinelli, Arianna & Rabellotti, Roberta, 2016. "Is Co-Invention Expediting Technological Catch Up? A Study of Collaboration between Emerging Country Firms and EU Inventors," World Development, Elsevier, vol. 77(C), pages 192-205.
    3. Jan Brenner, 2007. "Parental Impact on Attitude Formation - A Siblings Study on Worries about Immigration," Ruhr Economic Papers 0022, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    4. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    5. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2014. "How to improve the prediction based on citation impact percentiles for years shortly after the publication date?," Journal of Informetrics, Elsevier, vol. 8(1), pages 175-180.
    6. Karen Crabbé & Karolien De Bruyne, 2013. "Taxes, Agglomeration Rents and Location Decisions of Firms," De Economist, Springer, vol. 161(4), pages 421-446, December.
    7. Peter Sivey, 2012. "The effect of waiting time and distance on hospital choice for English cataract patients," Health Economics, John Wiley & Sons, Ltd., vol. 21(4), pages 444-456, April.
    8. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    9. Bambio, Yiriyibin & Bouayad Agha, Salima, 2018. "Land tenure security and investment: Does strength of land right really matter in rural Burkina Faso?," World Development, Elsevier, vol. 111(C), pages 130-147.
    10. Steckenleiter, Carina & Lechner, Michael & Pawlowski, Tim & Schüttoff, Ute, 2019. "Do local public expenditures on sports facilities affect sports participation in Germany?," Economics Working Paper Series 1905, University of St. Gallen, School of Economics and Political Science.
    11. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    12. Jean-Paul Azam & Kartika Bhatia, 2017. "Provoking insurgency in a federal state: theory and application to India," Public Choice, Springer, vol. 170(3), pages 183-210, March.
    13. Patrik Tingvall & Andreas Poldahl, 2012. "Determinants of Firm R&D: The Role of Relationship-Specific Interactions for R&D Spillovers," Journal of Industry, Competition and Trade, Springer, vol. 12(4), pages 395-411, December.
    14. Aysit TANSEL & H. Mehmet TASCI, 2001. "Determinants of Unemployment Duration for Men and Women in Turkey," Middle East and North Africa 330400055, EcoMod.
    15. Dorothea Jansen & Regina Görtz & Richard Heidler, 2010. "Knowledge production and the structure of collaboration networks in two scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 219-241, April.
    16. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    17. Nicolette D. Manglos-Weber, 2017. "Religious Transformations and Generalized Trust in Sub-Saharan Africa," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(2), pages 579-599, September.
    18. Aksoy, Ozan, 2019. "Social identity and social value orientations," SocArXiv 83rzv, Center for Open Science.
    19. Stanislav Kolenikov, 2009. "Confirmatory factor analysis using confa," Stata Journal, StataCorp LP, vol. 9(3), pages 329-373, September.
    20. Jové Llopis, Elisenda & Segarra Blasco, Agustí, 1958-, 2015. "Innovation success: What is the role of innovation strategies?," Working Papers 2072/260961, Universitat Rovira i Virgili, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4590-4600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.