IDEAS home Printed from https://ideas.repec.org/a/cup/pscirm/v7y2019i04p921-928_00.html
   My bibliography  Save this article

Simulating Duration Data for the Cox Model

Author

Listed:
  • Harden, Jeffrey J.
  • Kropko, Jonathan

Abstract

The Cox proportional hazards model is a popular method for duration analysis that is frequently the subject of simulation studies. However, no standard method exists for simulating durations directly from its data generating process because it does not assume a distributional form for the baseline hazard function. Instead, simulation studies typically rely on parametric survival distributions, which contradicts the primary motivation for employing the Cox model. We propose a method that generates a baseline hazard function at random by fitting a cubic spline to randomly drawn points. Durations drawn from this function match the Cox model’s inherent flexibility and improve the simulation’s generalizability. The method can be extended to include time-varying covariates and non-proportional hazards.

Suggested Citation

  • Harden, Jeffrey J. & Kropko, Jonathan, 2019. "Simulating Duration Data for the Cox Model," Political Science Research and Methods, Cambridge University Press, vol. 7(4), pages 921-928, October.
  • Handle: RePEc:cup:pscirm:v:7:y:2019:i:04:p:921-928_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2049847018000195/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lore Zumeta-Olaskoaga & Maximilian Weigert & Jon Larruskain & Eder Bikandi & Igor Setuain & Josean Lekue & Helmut Küchenhoff & Dae-Jin Lee, 2023. "Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 101-126, March.
    2. Kaitlyn Cook & Wenbin Lu & Rui Wang, 2023. "Marginal proportional hazards models for clustered interval‐censored data with time‐dependent covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 1670-1685, September.
    3. Joan Barceló & Robert Kubinec & Cindy Cheng & Tiril Høye Rahn & Luca Messerschmidt, 2022. "Windows of repression: Using COVID-19 policies against political dissidents?," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(1), pages 73-89, January.
    4. Luciana Carla Chiapella & Marta Beatriz Quaglino & María Eugenia Mamprin, 2023. "Properties of the Estimators of the Cox Regression Model with Imputed Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 330-352, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:pscirm:v:7:y:2019:i:04:p:921-928_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ram .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.