IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i7p1619-1626.html
   My bibliography  Save this article

Regression analysis of recurrent events data with incomplete observation gaps

Author

Listed:
  • Yang-Jin Kim

Abstract

For analyzing recurrent event data, either total time scale or gap time scale is adopted according to research interest. In particular, gap time scale is known to be more appropriate for modeling a renewal process. In this paper, we adopt gap time scale to analyze recurrent event data with repeated observation gaps which cannot be observed completely because of unknown termination times of observation gaps. In order to estimate termination times, interval-censored mechanism is applied. Simulation studies are done to compare the suggested methods with the unadjusted method ignoring incomplete observation gaps. As a real example, conviction data set with suspensions is analyzed with suggested methods.

Suggested Citation

  • Yang-Jin Kim, 2014. "Regression analysis of recurrent events data with incomplete observation gaps," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1619-1626, July.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:7:p:1619-1626
    DOI: 10.1080/02664763.2014.885002
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.885002
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.885002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    2. Sun J. & Kim Y.J. & Hewett J. & Johnson J. C & Farmer J. & Gibler M., 2001. "Evaluation of Traffic Injury Prevention Programs Using Counting Process Approaches," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 469-475, June.
    3. William B. Goggins & Dianne M. Finkelstein, 2000. "A Proportional Hazards Model for Multivariate Interval-Censored Failure Time Data," Biometrics, The International Biometric Society, vol. 56(3), pages 940-943, September.
    4. Els Goetghebeur & Louise Ryan, 2000. "Semiparametric Regression Analysis of Interval-Censored Data," Biometrics, The International Biometric Society, vol. 56(4), pages 1139-1144, December.
    5. Lei Liu & Xuelin Huang, 2009. "Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 65-81, February.
    6. Wei Pan, 2000. "A Multiple Imputation Approach to Cox Regression with Interval-Censored Data," Biometrics, The International Biometric Society, vol. 56(1), pages 199-203, March.
    7. Luc Duchateau & Paul Janssen & Iva Kezic & Catherine Fortpied, 2003. "Evolution of recurrent asthma event rate over time in frailty models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(3), pages 355-363, July.
    8. Zhao, Qiang & Sun, Jianguo, 2006. "Semiparametric and nonparametric analysis of recurrent events with observation gaps," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1924-1933, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ling & Sun, Jianguo, 2010. "A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1109-1116, April.
    2. Gongjun Xu & Sy Han Chiou & Chiung-Yu Huang & Mei-Cheng Wang & Jun Yan, 2017. "Joint Scale-Change Models for Recurrent Events and Failure Time," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 794-805, April.
    3. Bedair, Khaled & Hong, Yili & Li, Jie & Al-Khalidi, Hussein R., 2016. "Multivariate frailty models for multi-type recurrent event data and its application to cancer prevention trial," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 161-173.
    4. Min Zhang & Marie Davidian, 2008. "“Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data," Biometrics, The International Biometric Society, vol. 64(2), pages 567-576, June.
    5. Shen, Pao-sheng, 2015. "Conditional MLE for the proportional hazards model with left-truncated and interval-censored data," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 164-171.
    6. Yassin Mazroui & Audrey Mauguen & Simone Mathoulin-Pélissier & Gaetan MacGrogan & Véronique Brouste & Virginie Rondeau, 2016. "Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 191-215, April.
    7. Prabhashi W. Withana Gamage & Monica Chaudari & Christopher S. McMahan & Edwin H. Kim & Michael R. Kosorok, 2020. "An extended proportional hazards model for interval-censored data subject to instantaneous failures," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 158-182, January.
    8. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    9. Zhao, Qiang & Sun, Jianguo, 2006. "Semiparametric and nonparametric analysis of recurrent events with observation gaps," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1924-1933, December.
    10. Xingqiu Zhao & N. Balakrishnan & Jianguo Sun, 2011. "Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 1-42, May.
    11. Scolas, Sylvie & El Ghouch, Anouar & Legrand, Catherine, 2016. "The SNP representation in mixture cure models with interval-censoring: estimation and goodness-of-fit testing," LIDAM Discussion Papers ISBA 2016049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Yang-Jin Kim, 2006. "Regression Analysis of Doubly Censored Failure Time Data with Frailty," Biometrics, The International Biometric Society, vol. 62(2), pages 458-464, June.
    13. Shanshan Li, 2016. "Joint modeling of recurrent event processes and intermittently observed time-varying binary covariate processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 145-160, January.
    14. Peter Bacchetti & Christopher Quale, 2002. "Generalized Additive Models with Interval-Censored Data and Time-Varying Covariates: Application to Human Immunodeficiency Virus Infection in Hemophiliacs," Biometrics, The International Biometric Society, vol. 58(2), pages 443-447, June.
    15. Qing Cai & Mei‐Cheng Wang & Kwun Chuen Gary Chan, 2017. "Joint modeling of longitudinal, recurrent events and failure time data for survivor's population," Biometrics, The International Biometric Society, vol. 73(4), pages 1150-1160, December.
    16. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    17. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    18. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    19. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    20. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:7:p:1619-1626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.