IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1145-1158.html
   My bibliography  Save this article

Estimated quadratic inference function for correlated failure time data

Author

Listed:
  • Feifei Yan
  • Yanyan Liu
  • Jianwen Cai
  • Haibo Zhou

Abstract

An estimated quadratic inference function method is proposed for correlated failure time data with auxiliary covariates. The proposed method makes efficient use of the auxiliary information for the incomplete exposure covariates and preserves the property of the quadratic inference function method that requires the covariates to be completely observed. It can improve the estimation efficiency and easily deal with the situation when the cluster size is large. The proposed estimator which minimizes the estimated quadratic inference function is shown to be consistent and asymptotically normal. A chi‐squared test based on the estimated quadratic inference function is proposed to test hypotheses about the regression parameters. The small‐sample performance of the proposed method is investigated through extensive simulation studies. The proposed method is then applied to analyze the Study of Left Ventricular Dysfunction (SOLVD) data as an illustration.

Suggested Citation

  • Feifei Yan & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2023. "Estimated quadratic inference function for correlated failure time data," Biometrics, The International Biometric Society, vol. 79(2), pages 1145-1158, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1145-1158
    DOI: 10.1111/biom.13633
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13633
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanyan Liu & Haibo Zhou & Jianwen Cai, 2009. "Estimated Pseudopartial-Likelihood Method for Correlated Failure Time Data with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1184-1193, December.
    2. Liu, Yanyan & Wu, Yuanshan & Zhou, Haibo, 2010. "Multivariate failure times regression with a continuous auxiliary covariate," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 679-691, March.
    3. L. Xue & L. Wang & A. Qu, 2010. "Incorporating Correlation for Multivariate Failure Time Data When Cluster Size Is Large," Biometrics, The International Biometric Society, vol. 66(2), pages 393-404, June.
    4. Wendy F. Greene & Jianwen Cai, 2004. "Measurement Error in Covariates in the Marginal Hazards Model for Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 60(4), pages 987-996, December.
    5. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    6. Zhaozhi Fan & Xiao-Feng Wang, 2009. "Marginal hazards model for multivariate failure time data with auxiliary covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 771-786.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoping Shi & Yanyan Liu & Yuanshan Wu, 2014. "Auxiliary covariate in additive hazards regression for survival data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 101-113, March.
    2. Feifei Yan & Lin Zhu & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2021. "Semiparametric regression based on quadratic inference function for multivariate failure time data with auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 269-299, April.
    3. Chen, Yurong & Feng, Yanqin & Sun, Jianguo, 2015. "Regression analysis of multivariate current status data with auxiliary covariates under the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 34-45.
    4. Yanqin Feng & Yurong Chen, 2018. "Regression analysis of current status data with auxiliary covariates and informative observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 293-309, April.
    5. Hui Ding & Mei Yao & Riquan Zhang, 2023. "A new estimation in functional linear concurrent model with covariate dependent and noise contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 965-989, November.
    6. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    7. Li-Pang Chen & Grace Y. Yi, 2021. "Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 481-517, June.
    8. Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
    9. Bertho Tantular & Budi Nurani Ruchjana & Yudhie Andriyana & Anneleen Verhasselt, 2023. "Quantile Regression in Space-Time Varying Coefficient Model of Upper Respiratory Tract Infections Data," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    10. Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
    11. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    12. Yanqin Feng & Ling Ma & Jianguo Sun, 2015. "Regression Analysis of Current Status Data Under the Additive Hazards Model with Auxiliary Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 118-136, March.
    13. Y. Andriyana & I. Gijbels, 2017. "Quantile regression in heteroscedastic varying coefficient models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 151-176, April.
    14. Carlos A. Coelho & Anuradha Roy, 2017. "Testing the hypothesis of a block compound symmetric covariance matrix for elliptically contoured distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 308-330, June.
    15. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    16. Feng, Jiarui & Zhu, Zhongyi, 2011. "Semiparametric analysis of longitudinal zero-inflated count data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 61-72, January.
    17. Zheng, Xueying & Xue, Lan & Qu, Annie, 2018. "Time-varying correlation structure estimation and local-feature detection for spatio-temporal data," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 221-239.
    18. Zhao, Weihua & Lian, Heng & Song, Xinyuan, 2017. "Composite quantile regression for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 15-33.
    19. Lin, Fangzheng & Tang, Yanlin & Zhu, Zhongyi, 2020. "Weighted quantile regression in varying-coefficient model with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    20. Michela Battauz & Ruggero Bellio & Enrico Gori, 2008. "Reducing Measurement Error in Student Achievement Estimation," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 289-302, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1145-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.