IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i7p771-786.html
   My bibliography  Save this article

Marginal hazards model for multivariate failure time data with auxiliary covariates

Author

Listed:
  • Zhaozhi Fan
  • Xiao-Feng Wang

Abstract

A marginal hazards model of multivariate failure times has been developed based on the ‘working independence’ assumption [L.J. Wei, D.Y. Lin, and L. Wessfeld, Regression analysis of multivariate incomplete failure time data by modeling marginal distributions, J. Amer. Statist. Assoc. 84 (1989), pp. 1065–1073.]. In this article, we study the marginal hazards model of multivariate failure times with continuous auxiliary covariates. We consider the case of common baseline hazards for subjects from the same clusters. We extend the kernel smoothing procedure of Zhou and Wang [H. Zhou and C.Y. Wang, Failure time regression with continuous covariates measured with error, J. Roy. Statist. Soc. B 62 (2000), pp. 657–665.] to correlated failure time data. Through semiparametric estimation of the marginal partial likelihood function, we obtain the estimated partial likelihood based estimator of the regression coefficients. We present asymptotic properties of the induced estimator and demonstrate the performance of the proposed estimator through a finite sample simulation study. Finally, a real data application is conducted to elucidate the use of the method.

Suggested Citation

  • Zhaozhi Fan & Xiao-Feng Wang, 2009. "Marginal hazards model for multivariate failure time data with auxiliary covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 771-786.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:7:p:771-786
    DOI: 10.1080/10485250902915903
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250902915903
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250902915903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao Song & Yijian Huang, 2005. "On Corrected Score Approach for Proportional Hazards Model with Covariate Measurement Error," Biometrics, The International Biometric Society, vol. 61(3), pages 702-714, September.
    2. Halbo Zhou & C.‐Y. Wang, 2000. "Failure time regression with continuous covariates measured with error," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 657-665.
    3. Wendy F. Greene & Jianwen Cai, 2004. "Measurement Error in Covariates in the Marginal Hazards Model for Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 60(4), pages 987-996, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifei Yan & Lin Zhu & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2021. "Semiparametric regression based on quadratic inference function for multivariate failure time data with auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 269-299, April.
    2. Xiaoping Shi & Yanyan Liu & Yuanshan Wu, 2014. "Auxiliary covariate in additive hazards regression for survival data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 101-113, March.
    3. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    4. Feifei Yan & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2023. "Estimated quadratic inference function for correlated failure time data," Biometrics, The International Biometric Society, vol. 79(2), pages 1145-1158, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Pang Chen & Grace Y. Yi, 2021. "Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 481-517, June.
    2. Yanyan Liu & Haibo Zhou & Jianwen Cai, 2009. "Estimated Pseudopartial-Likelihood Method for Correlated Failure Time Data with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1184-1193, December.
    3. Feifei Yan & Lin Zhu & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2021. "Semiparametric regression based on quadratic inference function for multivariate failure time data with auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 269-299, April.
    4. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    5. Yanqing Sun & Qingning Zhou & Peter B. Gilbert, 2023. "Analysis of the Cox Model with Longitudinal Covariates with Measurement Errors and Partly Interval Censored Failure Times, with Application to an AIDS Clinical Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 430-454, July.
    6. Feifei Yan & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2023. "Estimated quadratic inference function for correlated failure time data," Biometrics, The International Biometric Society, vol. 79(2), pages 1145-1158, June.
    7. Wendy F. Greene & Jianwen Cai, 2004. "Measurement Error in Covariates in the Marginal Hazards Model for Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 60(4), pages 987-996, December.
    8. Yanqin Feng & Ling Ma & Jianguo Sun, 2015. "Regression Analysis of Current Status Data Under the Additive Hazards Model with Auxiliary Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 118-136, March.
    9. Xiaofei Wang & Haibo Zhou, 2006. "A Semiparametric Empirical Likelihood Method for Biased Sampling Schemes with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 62(4), pages 1149-1160, December.
    10. Ying Yan & Grace Y. Yi, 2016. "A Class of Functional Methods for Error-Contaminated Survival Data Under Additive Hazards Models with Replicate Measurements," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 684-695, April.
    11. Yih-Huei Huang & Chi-Chung Wen & Yu-Hua Hsu, 2015. "The Extensively Corrected Score for Measurement Error Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 911-924, December.
    12. Chen, Yurong & Feng, Yanqin & Sun, Jianguo, 2015. "Regression analysis of multivariate current status data with auxiliary covariates under the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 34-45.
    13. Pamela A. Shaw & Ross L. Prentice, 2012. "Hazard Ratio Estimation for Biomarker-Calibrated Dietary Exposures," Biometrics, The International Biometric Society, vol. 68(2), pages 397-407, June.
    14. Michela Battauz & Ruggero Bellio & Enrico Gori, 2008. "Reducing Measurement Error in Student Achievement Estimation," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 289-302, June.
    15. Xiao Song & C. Y. Wang, 2008. "Semiparametric Approaches for Joint Modeling of Longitudinal and Survival Data with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 64(2), pages 557-566, June.
    16. Ying Yan & Grace Y. Yi, 2016. "Analysis of error-prone survival data under additive hazards models: measurement error effects and adjustments," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 321-342, July.
    17. Aurelie Bertrand & Catherine Legrand & Raymond J. Carroll & Christophe de Meester & Ingrid Van Keilegom, 2017. "Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach," Biometrika, Biometrika Trust, vol. 104(1), pages 31-50.
    18. Xianzheng Huang & Leonard A. Stefanski & Marie Davidian, 2009. "Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process," Biometrics, The International Biometric Society, vol. 65(3), pages 719-727, September.
    19. Liu, Yanyan & Wu, Yuanshan & Zhou, Haibo, 2010. "Multivariate failure times regression with a continuous auxiliary covariate," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 679-691, March.
    20. Guangren Yang & Yanqing Sun & Li Qi & Peter B. Gilbert, 2017. "Estimation of Stratified Mark-Specific Proportional Hazards Models Under Two-Phase Sampling with Application to HIV Vaccine Efficacy Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 259-283, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:7:p:771-786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.