IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i2d10.1007_s10985-020-09513-1.html
   My bibliography  Save this article

Semiparametric regression based on quadratic inference function for multivariate failure time data with auxiliary information

Author

Listed:
  • Feifei Yan

    (Huazhong University of Science and Technology
    East China University of Technology)

  • Lin Zhu

    (East China University of Technology)

  • Yanyan Liu

    (Wuhan University)

  • Jianwen Cai

    (University of North Carolina at Chapel Hill)

  • Haibo Zhou

    (University of North Carolina at Chapel Hill)

Abstract

This paper deals with statistical inference procedure of multivariate failure time data when the primary covariate can be measured only on a subset of the full cohort but the auxiliary information is available. To improve efficiency of statistical inference, we use quadratic inference function approach to incorporate the intra-cluster correlation and use kernel smoothing technique to further utilize the auxiliary information. The proposed method is shown to be more efficient than those ignoring the intra-cluster correlation and auxiliary information and is easy to implement. In addition, we develop a chi-squared test for hypothesis testing of hazard ratio parameters. We evaluate the finite-sample performance of the proposed procedure via extensive simulation studies. The proposed approach is illustrated by analysis of a real data set from the study of left ventricular dysfunction.

Suggested Citation

  • Feifei Yan & Lin Zhu & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2021. "Semiparametric regression based on quadratic inference function for multivariate failure time data with auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 269-299, April.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:2:d:10.1007_s10985-020-09513-1
    DOI: 10.1007/s10985-020-09513-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-020-09513-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-020-09513-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanyan Liu & Haibo Zhou & Jianwen Cai, 2009. "Estimated Pseudopartial-Likelihood Method for Correlated Failure Time Data with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1184-1193, December.
    2. Halbo Zhou & C.‐Y. Wang, 2000. "Failure time regression with continuous covariates measured with error," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 657-665.
    3. Liu, Yanyan & Wu, Yuanshan & Zhou, Haibo, 2010. "Multivariate failure times regression with a continuous auxiliary covariate," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 679-691, March.
    4. Wendy F. Greene & Jianwen Cai, 2004. "Measurement Error in Covariates in the Marginal Hazards Model for Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 60(4), pages 987-996, December.
    5. Hu, Chengcheng & Lin, D.Y., 2004. "Semiparametric Failure Time Regression With Replicates of Mismeasured Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 105-118, January.
    6. Zhaozhi Fan & Xiao-Feng Wang, 2009. "Marginal hazards model for multivariate failure time data with auxiliary covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 771-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongkai Liang & Xiaoguang Wang & Yingwei Peng & Yi Niu, 2023. "Improving marginal hazard ratio estimation using quadratic inference functions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 823-853, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feifei Yan & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2023. "Estimated quadratic inference function for correlated failure time data," Biometrics, The International Biometric Society, vol. 79(2), pages 1145-1158, June.
    2. Xiaoping Shi & Yanyan Liu & Yuanshan Wu, 2014. "Auxiliary covariate in additive hazards regression for survival data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 101-113, March.
    3. Chen, Yurong & Feng, Yanqin & Sun, Jianguo, 2015. "Regression analysis of multivariate current status data with auxiliary covariates under the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 34-45.
    4. Yanqin Feng & Yurong Chen, 2018. "Regression analysis of current status data with auxiliary covariates and informative observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 293-309, April.
    5. Yanqin Feng & Ling Ma & Jianguo Sun, 2015. "Regression Analysis of Current Status Data Under the Additive Hazards Model with Auxiliary Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 118-136, March.
    6. Yanyan Liu & Haibo Zhou & Jianwen Cai, 2009. "Estimated Pseudopartial-Likelihood Method for Correlated Failure Time Data with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1184-1193, December.
    7. Liu, Yanyan & Wu, Yuanshan & Zhou, Haibo, 2010. "Multivariate failure times regression with a continuous auxiliary covariate," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 679-691, March.
    8. Zhaozhi Fan & Xiao-Feng Wang, 2009. "Marginal hazards model for multivariate failure time data with auxiliary covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 771-786.
    9. Hsiang Yu & Yu‐Jen Cheng & Ching‐Yun Wang, 2018. "Methods for multivariate recurrent event data with measurement error and informative censoring," Biometrics, The International Biometric Society, vol. 74(3), pages 966-976, September.
    10. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    11. Li-Pang Chen & Grace Y. Yi, 2021. "Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 481-517, June.
    12. Wendy F. Greene & Jianwen Cai, 2004. "Measurement Error in Covariates in the Marginal Hazards Model for Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 60(4), pages 987-996, December.
    13. Xiaofei Wang & Haibo Zhou, 2006. "A Semiparametric Empirical Likelihood Method for Biased Sampling Schemes with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 62(4), pages 1149-1160, December.
    14. Ying Yan & Grace Y. Yi, 2016. "A Class of Functional Methods for Error-Contaminated Survival Data Under Additive Hazards Models with Replicate Measurements," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 684-695, April.
    15. Yijian Huang & Ching†Yun Wang, 2018. "Cox regression with dependent error in covariates," Biometrics, The International Biometric Society, vol. 74(1), pages 118-126, March.
    16. Pamela A. Shaw & Ross L. Prentice, 2012. "Hazard Ratio Estimation for Biomarker-Calibrated Dietary Exposures," Biometrics, The International Biometric Society, vol. 68(2), pages 397-407, June.
    17. Michela Battauz & Ruggero Bellio & Enrico Gori, 2008. "Reducing Measurement Error in Student Achievement Estimation," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 289-302, June.
    18. Ying Yan & Grace Y. Yi, 2016. "Analysis of error-prone survival data under additive hazards models: measurement error effects and adjustments," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 321-342, July.
    19. Aurelie Bertrand & Catherine Legrand & Raymond J. Carroll & Christophe de Meester & Ingrid Van Keilegom, 2017. "Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach," Biometrika, Biometrika Trust, vol. 104(1), pages 31-50.
    20. Xianzheng Huang & Leonard A. Stefanski & Marie Davidian, 2009. "Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process," Biometrics, The International Biometric Society, vol. 65(3), pages 719-727, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:2:d:10.1007_s10985-020-09513-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.