IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i2p891-912.html
   My bibliography  Save this article

The effect of the working correlation on fitting models to longitudinal data

Author

Listed:
  • Samuel Muller
  • Suojin Wang
  • A. H. Welsh

Abstract

We present a detailed discussion of the theoretical properties of quadratic inference function estimators of the parameters in marginal linear regression models. We consider the effect of the choice of working correlation on fundamental questions including the existence of quadratic inference function estimators, their relationship with generalized estimating equations estimators, and the robustness and asymptotic relative efficiency of quadratic inference function and generalized estimating equations estimators. We show that the quadratic inference function estimators do not always exist and propose a way to handle this. We then show that they have unbounded influence functions and can be more or less asymptotically efficient than generalized estimating equations estimators. We also present empirical evidence to demonstrate these results. We conclude that the choice of working correlation can have surprisingly large effects.

Suggested Citation

  • Samuel Muller & Suojin Wang & A. H. Welsh, 2024. "The effect of the working correlation on fitting models to longitudinal data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 891-912, June.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:2:p:891-912
    DOI: 10.1111/sjos.12704
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12704
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:2:p:891-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.