IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i2p891-912.html
   My bibliography  Save this article

The effect of the working correlation on fitting models to longitudinal data

Author

Listed:
  • Samuel Muller
  • Suojin Wang
  • A. H. Welsh

Abstract

We present a detailed discussion of the theoretical properties of quadratic inference function estimators of the parameters in marginal linear regression models. We consider the effect of the choice of working correlation on fundamental questions including the existence of quadratic inference function estimators, their relationship with generalized estimating equations estimators, and the robustness and asymptotic relative efficiency of quadratic inference function and generalized estimating equations estimators. We show that the quadratic inference function estimators do not always exist and propose a way to handle this. We then show that they have unbounded influence functions and can be more or less asymptotically efficient than generalized estimating equations estimators. We also present empirical evidence to demonstrate these results. We conclude that the choice of working correlation can have surprisingly large effects.

Suggested Citation

  • Samuel Muller & Suojin Wang & A. H. Welsh, 2024. "The effect of the working correlation on fitting models to longitudinal data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 891-912, June.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:2:p:891-912
    DOI: 10.1111/sjos.12704
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12704
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Martin Crowder, 2001. "On repeated measures analysis with misspecified covariance structure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 55-62.
    3. You-Gan Wang, 2003. "Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance," Biometrika, Biometrika Trust, vol. 90(1), pages 29-41, March.
    4. Laura Dumitrescu & Wei Qian & J. N. K. Rao, 2021. "Inference for longitudinal data from complex sampling surveys: An approach based on quadratic inference functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 246-274, March.
    5. Lan Luo & Jingshen Wang & Emily C Hector, 2023. "Statistical inference for streamed longitudinal data," Biometrika, Biometrika Trust, vol. 110(4), pages 841-858.
    6. J Wang & H Wang & K Chen, 2023. "Discussion of ‘Statistical inference for streamed longitudinal data’," Biometrika, Biometrika Trust, vol. 110(4), pages 863-866.
    7. Annie Qu & Bruce G. Lindsay, 2003. "Building adaptive estimating equations when inverse of covariance estimation is difficult," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 127-142, February.
    8. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    9. Annie Qu, 2004. "Assessing robustness of generalised estimating equations and quadratic inference functions," Biometrika, Biometrika Trust, vol. 91(2), pages 447-459, June.
    10. Han, Peisong & Song, Peter X.-K., 2011. "A note on improving quadratic inference functions using a linear shrinkage approach," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 438-445, March.
    11. Stuart R. Lipsitz & Geert Molenberghs & Garrett M. Fitzmaurice & Joseph Ibrahim, 2000. "GEE with Gaussian Estimation of the Correlations When Data Are Incomplete," Biometrics, The International Biometric Society, vol. 56(2), pages 528-536, June.
    12. Lan Luo & Jingshen Wang & Emily C Hector, 2023. "Rejoinder: ‘Statistical inference for streamed longitudinal data’," Biometrika, Biometrika Trust, vol. 110(4), pages 871-874.
    13. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Westgate, Philip M., 2013. "A bias-corrected covariance estimator for improved inference when using an unstructured correlation with quadratic inference functions," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1553-1558.
    2. Bai, Yang & Fung, Wing K. & Zhu, Zhong Yi, 2009. "Penalized quadratic inference functions for single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 152-161, January.
    3. L. Xue & L. Wang & A. Qu, 2010. "Incorporating Correlation for Multivariate Failure Time Data When Cluster Size Is Large," Biometrics, The International Biometric Society, vol. 66(2), pages 393-404, June.
    4. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    5. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    6. You-Gan Wang & Yuning Zhao, 2007. "A Modified Pseudolikelihood Approach for Analysis of Longitudinal Data," Biometrics, The International Biometric Society, vol. 63(3), pages 681-689, September.
    7. Liya Fu & Zhuoran Yang & Fengjing Cai & You-Gan Wang, 2021. "Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis," Computational Statistics, Springer, vol. 36(2), pages 781-804, June.
    8. Liya Fu & Yangyang Hao & You-Gan Wang, 2018. "Working correlation structure selection in generalized estimating equations," Computational Statistics, Springer, vol. 33(2), pages 983-996, June.
    9. Lan Wang & Annie Qu, 2009. "Consistent model selection and data‐driven smooth tests for longitudinal data in the estimating equations approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 177-190, January.
    10. Guney, Yesim & Arslan, Olcay & Yavuz, Fulya Gokalp, 2022. "Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    11. Chi-Chuan Yang & Yi-Hau Chen & Hsing-Yi Chang, 2017. "Joint regression analysis of marginal quantile and quantile association: application to longitudinal body mass index in adolescents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 1075-1090, November.
    12. Zhao, Weihua & Lian, Heng & Song, Xinyuan, 2017. "Composite quantile regression for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 15-33.
    13. Han, Peisong & Song, Peter X.-K., 2011. "A note on improving quadratic inference functions using a linear shrinkage approach," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 438-445, March.
    14. Lai, Peng & Li, Gaorong & Lian, Heng, 2013. "Quadratic inference functions for partially linear single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 115-127.
    15. Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
    16. Green, Brittany & Lian, Heng & Yu, Yan & Zu, Tianhai, 2023. "Semiparametric penalized quadratic inference functions for longitudinal data in ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    17. O'Hara Hines, R.J. & Hines, W.G.S., 2007. "Covariance miss-specification and the local influence approach in sensitivity analyses of longitudinal data with drop-outs," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5537-5546, August.
    18. Geng, Shuli & Zhang, Lixin, 2024. "Decorrelated empirical likelihood for generalized linear models with high-dimensional longitudinal data," Statistics & Probability Letters, Elsevier, vol. 211(C).
    19. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    20. Frederico Belo & Chen Xue & Lu Zhang, 2010. "Cross-sectional Tobin's Q," NBER Working Papers 16336, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:2:p:891-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.