IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v26y2014i1p101-113.html
   My bibliography  Save this article

Auxiliary covariate in additive hazards regression for survival data

Author

Listed:
  • Xiaoping Shi
  • Yanyan Liu
  • Yuanshan Wu

Abstract

We consider the additive hazards regression analysis by utilising auxiliary covariate information to improve the efficiency of the statistical inference when the primary covariate is ascertained only for a randomly selected subsample. We construct a martingale-based estimating equation for the regression parameter and establish the asymptotic consistency and normality of the resultant estimator. Simulation study shows that our proposed method can improve the efficiency compared with the estimator which discards the auxiliary covariate information. A real example is also analysed as an illustration.

Suggested Citation

  • Xiaoping Shi & Yanyan Liu & Yuanshan Wu, 2014. "Auxiliary covariate in additive hazards regression for survival data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 101-113, March.
  • Handle: RePEc:taf:gnstxx:v:26:y:2014:i:1:p:101-113
    DOI: 10.1080/10485252.2013.834337
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2013.834337
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2013.834337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanyan Liu & Haibo Zhou & Jianwen Cai, 2009. "Estimated Pseudopartial-Likelihood Method for Correlated Failure Time Data with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1184-1193, December.
    2. Liu, Yanyan & Wu, Yuanshan & Zhou, Haibo, 2010. "Multivariate failure times regression with a continuous auxiliary covariate," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 679-691, March.
    3. Jiancheng Jiang & Zhou Haibo, 2007. "Additive hazard regression with auxiliary covariates," Biometrika, Biometrika Trust, vol. 94(2), pages 359-369.
    4. Wendy F. Greene & Jianwen Cai, 2004. "Measurement Error in Covariates in the Marginal Hazards Model for Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 60(4), pages 987-996, December.
    5. Zhaozhi Fan & Xiao-Feng Wang, 2009. "Marginal hazards model for multivariate failure time data with auxiliary covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 771-786.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feifei Yan & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2023. "Estimated quadratic inference function for correlated failure time data," Biometrics, The International Biometric Society, vol. 79(2), pages 1145-1158, June.
    2. Feifei Yan & Lin Zhu & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2021. "Semiparametric regression based on quadratic inference function for multivariate failure time data with auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 269-299, April.
    3. Chen, Yurong & Feng, Yanqin & Sun, Jianguo, 2015. "Regression analysis of multivariate current status data with auxiliary covariates under the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 34-45.
    4. Yanqin Feng & Yurong Chen, 2018. "Regression analysis of current status data with auxiliary covariates and informative observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 293-309, April.
    5. Wang, Xuan & Wang, Qihua, 2015. "Semiparametric linear transformation model with differential measurement error and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 67-80.
    6. Li-Pang Chen & Grace Y. Yi, 2021. "Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 481-517, June.
    7. Menggang Yu & Bin Nan, 2010. "Regression Calibration in Semiparametric Accelerated Failure Time Models," Biometrics, The International Biometric Society, vol. 66(2), pages 405-414, June.
    8. Zhuowei Sun & Hongyuan Cao & Li Chen, 2022. "Regression analysis of additive hazards model with sparse longitudinal covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 263-281, April.
    9. Mengling Liu & Wenbin Lu & Chi-hong Tseng, 2010. "Cox Regression in Nested Case–Control Studies with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 66(2), pages 374-381, June.
    10. Yanyan Liu & Haibo Zhou & Jianwen Cai, 2009. "Estimated Pseudopartial-Likelihood Method for Correlated Failure Time Data with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1184-1193, December.
    11. Aurelie Bertrand & Catherine Legrand & Raymond J. Carroll & Christophe de Meester & Ingrid Van Keilegom, 2017. "Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach," Biometrika, Biometrika Trust, vol. 104(1), pages 31-50.
    12. Xianzheng Huang & Leonard A. Stefanski & Marie Davidian, 2009. "Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process," Biometrics, The International Biometric Society, vol. 65(3), pages 719-727, September.
    13. Liu, Yanyan & Wu, Yuanshan & Zhou, Haibo, 2010. "Multivariate failure times regression with a continuous auxiliary covariate," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 679-691, March.
    14. Ying Yan & Haibo Zhou & Jianwen Cai, 2017. "Improving efficiency of parameter estimation in case-cohort studies with multivariate failure time data," Biometrics, The International Biometric Society, vol. 73(3), pages 1042-1052, September.
    15. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    16. Zhang, Wenyang & Peng, Heng, 2010. "Simultaneous confidence band and hypothesis test in generalised varying-coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1656-1680, August.
    17. Yanqin Feng & Ling Ma & Jianguo Sun, 2015. "Regression Analysis of Current Status Data Under the Additive Hazards Model with Auxiliary Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 118-136, March.
    18. Michela Battauz & Ruggero Bellio & Enrico Gori, 2008. "Reducing Measurement Error in Student Achievement Estimation," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 289-302, June.
    19. Ying Yan & Grace Y. Yi, 2016. "Analysis of error-prone survival data under additive hazards models: measurement error effects and adjustments," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 321-342, July.
    20. Zhaozhi Fan & Xiao-Feng Wang, 2009. "Marginal hazards model for multivariate failure time data with auxiliary covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 771-786.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:26:y:2014:i:1:p:101-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.