IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i1p31-50..html
   My bibliography  Save this article

Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach

Author

Listed:
  • Aurelie Bertrand
  • Catherine Legrand
  • Raymond J. Carroll
  • Christophe de Meester
  • Ingrid Van Keilegom

Abstract

SUMMARY In many situations in survival analysis, it may happen that a fraction of individuals will never experience the event of interest: they are considered to be cured. The promotion time cure model takes this into account. We consider the case where one or more explanatory variables in the model are subject to measurement error, which should be taken into account to avoid biased estimators. A general approach is the simulation-extrapolation algorithm, a method based on simulations which allows one to estimate the effect of measurement error on the bias of the estimators and to reduce this bias. We extend this approach to the promotion time cure model. We explain how the algorithm works, and we show that the proposed estimator is approximately consistent and asymptotically normally distributed, and that it performs well in finite samples. Finally, we analyse a database in cardiology: among the explanatory variables of interest is the ejection fraction, which is known to be measured with error.

Suggested Citation

  • Aurelie Bertrand & Catherine Legrand & Raymond J. Carroll & Christophe de Meester & Ingrid Van Keilegom, 2017. "Inference in a survival cure model with mismeasured covariates using a simulation-extrapolation approach," Biometrika, Biometrika Trust, vol. 104(1), pages 31-50.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:1:p:31-50.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asw054
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Lu, 2008. "Maximum likelihood estimation in the proportional hazards cure model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 545-574, September.
    2. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    3. Peng, Yingwei, 2003. "Fitting semiparametric cure models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 481-490, January.
    4. Tsodikov, Alexander, 1998. "Asymptotic efficiency of a proportional hazards model with cure," Statistics & Probability Letters, Elsevier, vol. 39(3), pages 237-244, August.
    5. Wendy F. Greene & Jianwen Cai, 2004. "Measurement Error in Covariates in the Marginal Hazards Model for Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 60(4), pages 987-996, December.
    6. Ma, Yanyuan & Yin, Guosheng, 2008. "Cure Rate Model With Mismeasured Covariates Under Transformation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 743-756, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Li-Pang, 2019. "Semiparametric estimation for cure survival model with left-truncated and right-censored data and covariate measurement error," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    2. Amico, Mailis & Van Keilegom, Ingrid, 2017. "Cure models in survival analysis," LIDAM Discussion Papers ISBA 2017007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Bertrand, A. & Legrand, C. & Léonard, D. & Van Keilegom, I., 2017. "Robustness of estimation methods in a survival cure model with mismeasured covariates," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 3-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Portier, Francois & El Ghouch, Anouar & Van Keilegom, Ingrid, 2015. "Efficiency and Bootstrap in the Promotion Time Cure Model," LIDAM Discussion Papers ISBA 2015012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Han, Bo & Wang, Xiaoguang, 2020. "Semiparametric estimation for the non-mixture cure model in case-cohort and nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Angelica Hernandez-Quintero & Jean-François Dupuy & Gabriel Escarela, 2011. "Analysis of a semiparametric mixture model for competing risks," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 305-329, April.
    4. Muller, Ursula & Van Keilegom, Ingrid, 2016. "Goodness-of-t tests for the cure rate in a mixture cure model," LIDAM Discussion Papers ISBA 2016037, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    6. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    8. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    9. Mondal, Shoubhik & Subramanian, Sundarraman, 2014. "Model assisted Cox regression," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 281-303.
    10. Li-Pang Chen & Grace Y. Yi, 2021. "Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 481-517, June.
    11. Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
    12. Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Feifei Yan & Yanyan Liu & Jianwen Cai & Haibo Zhou, 2023. "Estimated quadratic inference function for correlated failure time data," Biometrics, The International Biometric Society, vol. 79(2), pages 1145-1158, June.
    14. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    15. Amico, Mailis & Van Keilegom, Ingrid, 2017. "Cure models in survival analysis," LIDAM Discussion Papers ISBA 2017007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Gallardo, Diego I. & Bolfarine, Heleno & Pedroso-de-Lima, Antonio Carlos, 2016. "Destructive weighted Poisson cure rate models with bivariate random effects: Classical and Bayesian approaches," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 31-45.
    17. Bremhorst, Vincent & Kreyenfeld, Michaela & Lambert, Philippe, 2017. "Nonparametric double additive cure survival models: an application to the estimation of the nonlinear effect of age at first parenthood on fertility progression," LIDAM Discussion Papers ISBA 2017004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Gressani, Oswaldo & Lambert, Philippe, 2018. "Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 151-167.
    19. Amélie Detais & Jean-François Dupuy, 2011. "Maximum likelihood estimation in a partially observed stratified regression model with censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1183-1206, December.
    20. Jialiang Li & Tonghui Yu & Jing Lv & Mei‐Ling Ting Lee, 2021. "Semiparametric model averaging prediction for lifetime data via hazards regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1187-1209, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:1:p:31-50.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.