IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i1p488-501.html
   My bibliography  Save this article

Evaluating the association between latent classes and competing risks outcomes with multiphenotype data

Author

Listed:
  • Teng Fei
  • John Hanfelt
  • Limin Peng

Abstract

Latent class analysis is an intuitive tool to characterize disease phenotype heterogeneity. With data more frequently collected on multiple phenotypes in chronic disease studies, it is of rising interest to investigate how the latent classes embedded in one phenotype are related to another phenotype. Motivated by a cohort with mild cognitive impairment (MCI) from the Uniform Data Set (UDS), we propose and study a time‐dependent structural model to evaluate the association between latent classes and competing risk outcomes that are subject to missing failure types. We develop a two‐step estimation procedure which circumvents latent class membership assignment and is rigorously justified in terms of accounting for the uncertainty in classifying latent classes. The new method also properly addresses the realistic complications for competing risks outcomes, including random censoring and missing failure types. The asymptotic properties of the resulting estimator are established. Given that the standard bootstrapping inference is not feasible in the current problem setting, we develop analytical inference procedures, which are easy to implement. Our simulation studies demonstrate the advantages of the proposed method over benchmark approaches. We present an application to the MCI data from UDS, which uncovers a detailed picture of the neuropathological relevance of the baseline MCI subgroups.

Suggested Citation

  • Teng Fei & John Hanfelt & Limin Peng, 2023. "Evaluating the association between latent classes and competing risks outcomes with multiphenotype data," Biometrics, The International Biometric Society, vol. 79(1), pages 488-501, March.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:488-501
    DOI: 10.1111/biom.13563
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13563
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boldea, Otilia & Magnus, Jan R., 2009. "Maximum Likelihood Estimation of the Multivariate Normal Mixture Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1539-1549.
    2. Wang, Chen-Pin & Hendricks Brown, C. & Bandeen-Roche, Karen, 2005. "Residual Diagnostics for Growth Mixture Models: Examining the Impact of a Preventive Intervention on Multiple Trajectories of Aggressive Behavior," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1054-1076, September.
    3. Qian-Li Xue & Karen Bandeen-Roche, 2002. "Combining Complete Multivariate Outcomes with Incomplete Covariate Information: A Latent Class Approach," Biometrics, The International Biometric Society, vol. 58(1), pages 110-120, March.
    4. Giorgos Bakoyannis & Ying Zhang & Constantin T. Yiannoutsos, 2020. "Semiparametric regression and risk prediction with competing risks data under missing cause of failure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 659-684, October.
    5. Vermunt, Jeroen K., 2010. "Latent Class Modeling with Covariates: Two Improved Three-Step Approaches," Political Analysis, Cambridge University Press, vol. 18(4), pages 450-469.
    6. Kaifeng Lu & Anastasios A. Tsiatis, 2001. "Multiple Imputation Methods for Estimating Regression Coefficients in the Competing Risks Model with Missing Cause of Failure," Biometrics, The International Biometric Society, vol. 57(4), pages 1191-1197, December.
    7. Thomas H. Scheike & Mei-Jie Zhang & Thomas A. Gerds, 2008. "Predicting cumulative incidence probability by direct binomial regression," Biometrika, Biometrika Trust, vol. 95(1), pages 205-220.
    8. Guosheng Yin & Jianwen Cai, 2004. "Additive hazards model with multivariate failure time data," Biometrika, Biometrika Trust, vol. 91(4), pages 801-818, December.
    9. Limin Peng & Yijian Huang, 2007. "Survival analysis with temporal covariate effects," Biometrika, Biometrika Trust, vol. 94(3), pages 719-733.
    10. Bolck, Annabel & Croon, Marcel & Hagenaars, Jacques, 2004. "Estimating Latent Structure Models with Categorical Variables: One-Step Versus Three-Step Estimators," Political Analysis, Cambridge University Press, vol. 12(1), pages 3-27, January.
    11. Guozhi Gao & Anastasios A. Tsiatis, 2005. "Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure," Biometrika, Biometrika Trust, vol. 92(4), pages 875-891, December.
    12. Proust-Lima, Cécile & Joly, Pierre & Dartigues, Jean-François & Jacqmin-Gadda, Hélène, 2009. "Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1142-1154, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zsuzsa Bakk & Jouni Kuha, 2018. "Two-Step Estimation of Models Between Latent Classes and External Variables," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 871-892, December.
    2. Bakk, Zsuzsa & Kuha, Jouni, 2020. "Relating latent class membership to external variables: an overview," LSE Research Online Documents on Economics 107564, London School of Economics and Political Science, LSE Library.
    3. Giorgos Bakoyannis & Ying Zhang & Constantin T. Yiannoutsos, 2020. "Semiparametric regression and risk prediction with competing risks data under missing cause of failure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 659-684, October.
    4. Bakk, Zsuzsa & Kuha, Jouni, 2018. "Two-step estimation of models between latent classes and external variables," LSE Research Online Documents on Economics 85161, London School of Economics and Political Science, LSE Library.
    5. Jennifer Oser & Marc Hooghe & Zsuzsa Bakk & Roberto Mari, 2023. "Changing citizenship norms among adolescents, 1999-2009-2016: A two-step latent class approach with measurement equivalence testing," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4915-4933, October.
    6. Lecegui, Antonio & Olaizola, Ana María & López-i-Gelats, Feliu & Varela, Elsa, 2022. "Implementing the livelihood resilience framework: An indicator-based model for assessing mountain pastoral farming systems," Agricultural Systems, Elsevier, vol. 199(C).
    7. Daniel Nevo & Reiko Nishihara & Shuji Ogino & Molin Wang, 2018. "The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 425-442, July.
    8. Aely Park & Youngmi Kim & Jennifer Murphy, 2023. "Adverse Childhood Experiences and Substance Use Among Korean College Students: Different by Gender?," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 16(4), pages 1811-1825, August.
    9. Janne Petersen & Karen Bandeen-Roche & Esben Budtz-Jørgensen & Klaus Groes Larsen, 2012. "Predicting Latent Class Scores for Subsequent Analysis," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 244-262, April.
    10. Gugerty, Mary Kay & Mitchell, George E. & Santamarina, Francisco J., 2021. "Discourses of evaluation: Institutional logics and organizational practices among international development agencies," World Development, Elsevier, vol. 146(C).
    11. Paweł A. Atroszko & Bartosz Atroszko & Edyta Charzyńska, 2021. "Subpopulations of Addictive Behaviors in Different Sample Types and Their Relationships with Gender, Personality, and Well-Being: Latent Profile vs. Latent Class Analysis," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    12. Konte M., 2014. "Do remittances not promote growth? : a bias-adjusted three-step mixture-of-regressions," MERIT Working Papers 2014-075, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    13. F. J. Clouth & S. Pauws & F. Mols & J. K. Vermunt, 2022. "A new three-step method for using inverse propensity weighting with latent class analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 351-371, June.
    14. Natalia A. Gouskova & Feng-Chang Lin & Jason P. Fine, 2017. "Nonparametric analysis of competing risks data with event category missing at random," Biometrics, The International Biometric Society, vol. 73(1), pages 104-113, March.
    15. Bertrand, Aurélie & Hafner, Christian M., 2011. "On heterogeneous latent class models with applications to the analysis of rating scores," SFB 649 Discussion Papers 2011-062, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Fei Heng & Yanqing Sun & Seunggeun Hyun & Peter B. Gilbert, 2020. "Analysis of the time-varying Cox model for the cause-specific hazard functions with missing causes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 731-760, October.
    17. Lucy Prior, 2021. "Allostatic Load and Exposure Histories of Disadvantage," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    18. Yajing Zhu & Fiona Steele & Irini Moustaki, 2020. "A multilevel structural equation model for the interrelationships between multiple latent dimensions of childhood socio‐economic circumstances, partnership transitions and mid‐life health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1029-1050, June.
    19. Martin Lukac & Nadja Doerflinger & Valeria Pulignano, 2019. "Developing a Cross-National Comparative Framework for Studying Labour Market Segmentation: Measurement Equivalence with Latent Class Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 145(1), pages 233-255, August.
    20. Adane F. Wogu & Haolin Li & Shanshan Zhao & Hazel B. Nichols & Jianwen Cai, 2023. "Additive subdistribution hazards regression for competing risks data in case‐cohort studies," Biometrics, The International Biometric Society, vol. 79(4), pages 3010-3022, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:488-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.