IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p2076-d448401.html
   My bibliography  Save this article

Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis

Author

Listed:
  • Seohee Park

    (Department of Psychological and Quantitative Foundations, College of Education, University of Iowa, Iowa City, IA 52242, USA)

  • Seongeun Kim

    (Department of Educational Research Methodology, School of Education, University of North Carolina at Greensboro, Greensboro, NC 27412, USA)

  • Ji Hoon Ryoo

    (Department of Education, College of Educational Sciences, Yonsei University, Seoul 03722, Korea)

Abstract

Latent class analysis (LCA) has been applied in many research areas to disentangle the heterogeneity of a population. Despite its popularity, its estimation method is limited to maximum likelihood estimation (MLE), which requires large samples to satisfy both the multivariate normality assumption and local independence assumption. Although many suggestions regarding adequate sample sizes were proposed, researchers continue to apply LCA with relatively smaller samples. When covariates are involved, the estimation issue is encountered more. In this study, we suggest a different estimating approach for LCA with covariates, also known as latent class regression (LCR), using a fuzzy clustering method and generalized structured component analysis (GSCA). This new approach is free from the distributional assumption and stable in estimating parameters. Parallel to the three-step approach used in the MLE-based LCA, we extend an algorithm of fuzzy clusterwise GSCA into LCR. This proposed algorithm has been demonstrated with an empirical data with both categorical and continuous covariates. Because the proposed algorithm can be used for a relatively small sample in LCR without requiring a multivariate normality assumption, the new algorithm is more applicable to social, behavioral, and health sciences.

Suggested Citation

  • Seohee Park & Seongeun Kim & Ji Hoon Ryoo, 2020. "Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2076-:d:448401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/2076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/2076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vermunt, Jeroen K., 2010. "Latent Class Modeling with Covariates: Two Improved Three-Step Approaches," Political Analysis, Cambridge University Press, vol. 18(4), pages 450-469.
    2. Forrest Young, 1981. "Quantitative analysis of qualitative data," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 357-388, December.
    3. Linzer, Drew A. & Lewis, Jeffrey B., 2011. "poLCA: An R Package for Polytomous Variable Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i10).
    4. Xia, Jianhong (Cecilia) & Evans, Fiona H. & Spilsbury, Katrina & Ciesielski, Vic & Arrowsmith, Colin & Wright, Graeme, 2010. "Market segments based on the dominant movement patterns of tourists," Tourism Management, Elsevier, vol. 31(4), pages 464-469.
    5. Kwanghee Jung & Yoshio Takane & Heungsun Hwang & Todd Woodward, 2012. "Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 827-848, October.
    6. Dereje W. Gudicha & Fetene B. Tekle & Jeroen K. Vermunt, 2016. "Power and Sample Size Computation for Wald Tests in Latent Class Models," Journal of Classification, Springer;The Classification Society, vol. 33(1), pages 30-51, April.
    7. Jan Leeuw & Forrest Young & Yoshio Takane, 1976. "Additive structure in qualitative data: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 471-503, December.
    8. Bolck, Annabel & Croon, Marcel & Hagenaars, Jacques, 2004. "Estimating Latent Structure Models with Categorical Variables: One-Step Versus Three-Step Estimators," Political Analysis, Cambridge University Press, vol. 12(1), pages 3-27, January.
    9. Heungsun Hwang & Wayne Desarbo & Yoshio Takane, 2007. "Fuzzy Clusterwise Generalized Structured Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 181-198, June.
    10. Wayne DeSarbo & Richard Oliver & Arvind Rangaswamy, 1989. "A simulated annealing methodology for clusterwise linear regression," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 707-736, September.
    11. Forrest Young & Jan Leeuw & Yoshio Takane, 1976. "Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 505-529, December.
    12. Jiang, Y. & Perry, D.K. & Hesser, J.E., 2010. "Suicide patterns and association with predictors among rhode island public high school students: A latent class analysis," American Journal of Public Health, American Public Health Association, vol. 100(9), pages 1701-1707.
    13. José Dias & Jeroen Vermunt, 2008. "A bootstrap-based aggregate classifier for model-based clustering," Computational Statistics, Springer, vol. 23(4), pages 643-659, October.
    14. Heungsun Hwang & Yoshio Takane, 2004. "Generalized structured component analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 81-99, March.
    15. Anders Skrondal & Petter Laake, 2001. "Regression among factor scores," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 563-575, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Lixing & Takane, Yoshio & Hwang, Heungsun, 2016. "Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 93-109.
    2. Zsuzsa Bakk & Jouni Kuha, 2018. "Two-Step Estimation of Models Between Latent Classes and External Variables," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 871-892, December.
    3. Kwanghee Jung & Yoshio Takane & Heungsun Hwang & Todd Woodward, 2012. "Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 827-848, October.
    4. Hye Won Suk & Heungsun Hwang, 2016. "Functional Generalized Structured Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 940-968, December.
    5. Bakk, Zsuzsa & Kuha, Jouni, 2018. "Two-step estimation of models between latent classes and external variables," LSE Research Online Documents on Economics 85161, London School of Economics and Political Science, LSE Library.
    6. Heungsun Hwang & Moon-Ho Ho & Jonathan Lee, 2010. "Generalized Structured Component Analysis with Latent Interactions," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 228-242, June.
    7. Gyeongcheol Cho & Heungsun Hwang & Marko Sarstedt & Christian M. Ringle, 2020. "Cutoff criteria for overall model fit indexes in generalized structured component analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(4), pages 189-202, December.
    8. van Rosmalen, J.M. & Koning, A.J. & Groenen, P.J.F., 2007. "Optimal Scaling of Interaction Effects in Generalized Linear Models," Econometric Institute Research Papers EI 2007-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Heungsun Hwang & Gyeongcheol Cho, 2020. "Global Least Squares Path Modeling: A Full-Information Alternative to Partial Least Squares Path Modeling," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 947-972, December.
    10. F. J. Clouth & S. Pauws & F. Mols & J. K. Vermunt, 2022. "A new three-step method for using inverse propensity weighting with latent class analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 351-371, June.
    11. Aurélie Bertrand & Christian Hafner, 2014. "On heterogeneous latent class models with applications to the analysis of rating scores," Computational Statistics, Springer, vol. 29(1), pages 307-330, February.
    12. Takane, Yoshio, 2016. "My Early Interactions with Jan and Some of His Lost Papers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i07).
    13. Durante, Daniele & Canale, Antonio & Rigon, Tommaso, 2019. "A nested expectation–maximization algorithm for latent class models with covariates," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 97-103.
    14. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    15. Zamrudi Zakky & Wicaksono Teguh, 2018. "Promoting the Use of Social Commerce on SME in the Context of Logistics: UTAUT Model Examination," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 9(2), pages 73-82, November.
    16. Jennifer Oser & Marc Hooghe & Zsuzsa Bakk & Roberto Mari, 2023. "Changing citizenship norms among adolescents, 1999-2009-2016: A two-step latent class approach with measurement equivalence testing," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4915-4933, October.
    17. Lecegui, Antonio & Olaizola, Ana María & López-i-Gelats, Feliu & Varela, Elsa, 2022. "Implementing the livelihood resilience framework: An indicator-based model for assessing mountain pastoral farming systems," Agricultural Systems, Elsevier, vol. 199(C).
    18. Aely Park & Youngmi Kim & Jennifer Murphy, 2023. "Adverse Childhood Experiences and Substance Use Among Korean College Students: Different by Gender?," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 16(4), pages 1811-1825, August.
    19. Bakk, Zsuzsa & Kuha, Jouni, 2020. "Relating latent class membership to external variables: an overview," LSE Research Online Documents on Economics 107564, London School of Economics and Political Science, LSE Library.
    20. van der Kooij, Anita J. & Meulman, Jacqueline J. & Heiser, Willem J., 2006. "Local minima in categorical multiple regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 446-462, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2076-:d:448401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.