IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i4p801-818.html
   My bibliography  Save this article

Additive hazards model with multivariate failure time data

Author

Listed:
  • Guosheng Yin
  • Jianwen Cai

Abstract

Marginal additive hazards models are considered for multivariate survival data in which individuals may experience events of several types and there may also be correlation between individuals. Estimators are proposed for the parameters of such models and for the baseline hazard functions. The estimators of the regression coeffcients are shown asymptotically to follow a multivariate normal distribution with a sandwich-type covariance matrix that can be consistently estimated. The estimated baseline and subject-specific cumulative hazard processes are shown to converge weakly to a zero-mean Gaussian random field. The weak convergence properties for the corresponding survival processes are established. A resampling technique is proposed for constructing simultaneous confidence bands for the survival curve of a specific subject. The methodology is extended to a multivariate version of a class of partly parametric additive hazards model. Simulation studies are conducted to assess finite sample properties, and the method is illustrated with an application to development of coronary heart diseases and cardiovascular accidents in the Framingham Heart Study. Copyright 2004, Oxford University Press.

Suggested Citation

  • Guosheng Yin & Jianwen Cai, 2004. "Additive hazards model with multivariate failure time data," Biometrika, Biometrika Trust, vol. 91(4), pages 801-818, December.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:4:p:801-818
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/91.4.801
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie He & Hui Li & Shumei Zhang & Xiaogang Duan, 2019. "Additive hazards model with auxiliary subgroup survival information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 128-149, January.
    2. Adane F. Wogu & Haolin Li & Shanshan Zhao & Hazel B. Nichols & Jianwen Cai, 2023. "Additive subdistribution hazards regression for competing risks data in case‐cohort studies," Biometrics, The International Biometric Society, vol. 79(4), pages 3010-3022, December.
    3. Yin, Guosheng, 2007. "Model checking for additive hazards model with multivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1018-1032, May.
    4. Giorgos Bakoyannis & Ying Zhang & Constantin T. Yiannoutsos, 2020. "Semiparametric regression and risk prediction with competing risks data under missing cause of failure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 659-684, October.
    5. Xiuyu J. Cong & Guosheng Yin & Yu Shen, 2007. "Marginal Analysis of Correlated Failure Time Data with Informative Cluster Sizes," Biometrics, The International Biometric Society, vol. 63(3), pages 663-672, September.
    6. Jieli Ding & Liuquan Sun, 2017. "Additive mixed effect model for recurrent gap time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 223-253, April.
    7. Ye, Peng & Zhao, Xingqiu & Sun, Liuquan & Xu, Wei, 2015. "A semiparametric additive rates model for multivariate recurrent events with missing event categories," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 39-50.
    8. David D. Hanagal, 2021. "RETRACTED ARTICLE: Positive Stable Shared Frailty Models Based on Additive Hazards," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 431-453, December.
    9. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    10. Goele Massonnet & Paul Janssen & Tomasz Burzykowski, 2008. "Fitting Conditional Survival Models to Meta‐Analytic Data by Using a Transformation Toward Mixed‐Effects Models," Biometrics, The International Biometric Society, vol. 64(3), pages 834-842, September.
    11. Hui Li & Xiaogang Duan & Guosheng Yin, 2016. "Generalized Method of Moments for Additive Hazards Model with Clustered Dental Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1124-1139, December.
    12. Ling Chen & Yanqin Feng & Jianguo Sun, 2017. "Regression analysis of clustered failure time data with informative cluster size under the additive transformation models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 651-670, October.
    13. Wang, Shuying & Wang, Chunjie & Wang, Peijie & Sun, Jianguo, 2018. "Semiparametric analysis of the additive hazards model with informatively interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 1-9.
    14. Teng Fei & John Hanfelt & Limin Peng, 2023. "Evaluating the association between latent classes and competing risks outcomes with multiphenotype data," Biometrics, The International Biometric Society, vol. 79(1), pages 488-501, March.
    15. Jianwen Cai & Donglin Zeng, 2011. "Additive Mixed Effect Model for Clustered Failure Time Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1340-1351, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:4:p:801-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.