IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i1p46-59.html
   My bibliography  Save this article

Nonlinear mediation analysis with high‐dimensional mediators whose causal structure is unknown

Author

Listed:
  • Wen Wei Loh
  • Beatrijs Moerkerke
  • Tom Loeys
  • Stijn Vansteelandt

Abstract

With multiple possible mediators on the causal pathway from a treatment to an outcome, we consider the problem of decomposing the effects along multiple possible causal path(s) through each distinct mediator. Under a path‐specific effects framework, such fine‐grained decompositions necessitate stringent assumptions, such as correctly specifying the causal structure among the mediators, and no unobserved confounding among the mediators. In contrast, interventional direct and indirect effects for multiple mediators can be identified under much weaker conditions, while providing scientifically relevant causal interpretations. Nonetheless, current estimation approaches require (correctly) specifying a model for the joint mediator distribution, which can be difficult when there is a high‐dimensional set of possibly continuous and noncontinuous mediators. In this article, we avoid the need to model this distribution, by developing a definition of interventional effects previously suggested for longitudinal mediation. We propose a novel estimation strategy that uses nonparametric estimates of the (counterfactual) mediator distributions. Noncontinuous outcomes can be accommodated using nonlinear outcome models. Estimation proceeds via Monte Carlo integration. The procedure is illustrated using publicly available genomic data to assess the causal effect of a microRNA expression on the 3‐month mortality of brain cancer patients that is potentially mediated by expression values of multiple genes.

Suggested Citation

  • Wen Wei Loh & Beatrijs Moerkerke & Tom Loeys & Stijn Vansteelandt, 2022. "Nonlinear mediation analysis with high‐dimensional mediators whose causal structure is unknown," Biometrics, The International Biometric Society, vol. 78(1), pages 46-59, March.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:46-59
    DOI: 10.1111/biom.13402
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13402
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    2. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    3. Zhao, Yi & Lindquist, Martin A. & Caffo, Brian S., 2020. "Sparse principal component based high-dimensional mediation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
    4. R. M. Daniel & B. L. De Stavola & S. N. Cousens & S. Vansteelandt, 2015. "Causal mediation analysis with multiple mediators," Biometrics, The International Biometric Society, vol. 71(1), pages 1-14, March.
    5. Tyler J. VanderWeele & Eric J. Tchetgen Tchetgen, 2017. "Mediation analysis with time varying exposures and mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 917-938, June.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    7. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    8. Yen-Tsung Huang & Wen-Chi Pan, 2016. "Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators," Biometrics, The International Biometric Society, vol. 72(2), pages 402-413, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    2. Aaron Chalfin & Benjamin Hansen & Jason Lerner & Lucie Parker, 2019. "Reducing Crime Through Environmental Design: Evidence from a Randomized Experiment of Street Lighting in New York City," NBER Working Papers 25798, National Bureau of Economic Research, Inc.
    3. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020. "lassopack: Model selection and prediction with regularized regression in Stata," Stata Journal, StataCorp LP, vol. 20(1), pages 176-235, March.
    4. Cai, Xizhen & Zhu, Yeying & Huang, Yuan & Ghosh, Debashis, 2022. "High-dimensional causal mediation analysis based on partial linear structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    5. Yi Zhao & Lexin Li & Brian S. Caffo, 2021. "Multimodal neuroimaging data integration and pathway analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 879-889, September.
    6. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    7. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    8. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    9. Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Mathematics, MDPI, vol. 12(18), pages 1-26, September.
    10. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    11. Katarina M. Jørgensen & Ellen Færgestad Mosleth & Kristian Hovde Liland & Nancy B. Hopf & Rita Holdhus & Anne-Kristin Stavrum & Bjørn Tore Gjertsen & Jorunn Kirkeleit, 2018. "Gene Expression Response in Peripheral Blood Cells of Petroleum Workers Exposed to Sub-Ppm Benzene Levels," IJERPH, MDPI, vol. 15(11), pages 1-18, October.
    12. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    13. Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2023. "Short- and long-run determinants of the price behavior of US clean energy stocks: A dynamic ARDL simulations approach," Energy Economics, Elsevier, vol. 124(C).
    14. Maur,Jean-Christophe & Nedeljkovic,Milan & Von Uexkull,Jan Erik, 2022. "FDI and Trade Outcomes at the Industry Level—A Data-Driven Approach," Policy Research Working Paper Series 9901, The World Bank.
    15. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    16. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    17. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    18. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    19. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    20. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:46-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.