IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v79y2017i3p917-938.html
   My bibliography  Save this article

Mediation analysis with time varying exposures and mediators

Author

Listed:
  • Tyler J. VanderWeele
  • Eric J. Tchetgen Tchetgen

Abstract

No abstract is available for this item.

Suggested Citation

  • Tyler J. VanderWeele & Eric J. Tchetgen Tchetgen, 2017. "Mediation analysis with time varying exposures and mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 917-938, June.
  • Handle: RePEc:bla:jorssb:v:79:y:2017:i:3:p:917-938
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.12194
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. J. Tchetgen Tchetgen & I. Shpitser, 2014. "Estimation of a semiparametric natural direct effect model incorporating baseline covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 849-864.
    2. R. M. Daniel & B. L. De Stavola & S. N. Cousens & S. Vansteelandt, 2015. "Causal mediation analysis with multiple mediators," Biometrics, The International Biometric Society, vol. 71(1), pages 1-14, March.
    3. Sylvie Goetgeluk & Stijn Vansteelandt & Els Goetghebeur, 2008. "Estimation of controlled direct effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 1049-1066, November.
    4. Shpitser Ilya & VanderWeele Tyler J, 2011. "A Complete Graphical Criterion for the Adjustment Formula in Mediation Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-24, March.
    5. Sara Geneletti, 2007. "Identifying direct and indirect effects in a non‐counterfactual framework," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 199-215, April.
    6. Jeffrey M. Albert & Suchitra Nelson, 2011. "Generalized Causal Mediation Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 1028-1038, September.
    7. Imai, Kosuke & Yamamoto, Teppei, 2013. "Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments," Political Analysis, Cambridge University Press, vol. 21(2), pages 141-171, April.
    8. R. Gargiulo & Mark Stokes, 2009. "Subjective Well-Being as an Indicator for Clinical Depression," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 92(3), pages 517-527, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Wenjing & van der Laan Mark, 2017. "Longitudinal Mediation Analysis with Time-varying Mediators and Exposures, with Application to Survival Outcomes," Journal of Causal Inference, De Gruyter, vol. 5(2), pages 1-24, September.
    2. Kara E. Rudolph & Iván Díaz, 2022. "When the ends do not justify the means: Learning who is predicted to have harmful indirect effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 573-589, December.
    3. Cai Xiaoxuan & Loh Wen Wei & Crawford Forrest W., 2021. "Identification of causal intervention effects under contagion," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 9-38, January.
    4. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    5. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    6. Kara E. Rudolph & Jonathan Levy & Mark J. van der Laan, 2021. "Transporting stochastic direct and indirect effects to new populations," Biometrics, The International Biometric Society, vol. 77(1), pages 197-211, March.
    7. Park Soojin & Kang Suyeon & Lee Chioun & Ma Shujie, 2023. "Sensitivity analysis for causal decomposition analysis: Assessing robustness toward omitted variable bias," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-23, January.
    8. Maarten J. Bijlsma & Ben Wilson, 2017. "Modelling the socio-economic determinants of fertility: a mediation analysis using the parametric g-formula," MPIDR Working Papers WP-2017-013, Max Planck Institute for Demographic Research, Rostock, Germany.
    9. Jessica Nisén & Maarten J. Bijlsma & Pekka Martikainen & Ben Wilson & Mikko Myrskylä, 2019. "The gendered impacts of delayed parenthood on educational and labor market outcomes: a dynamic analysis of population-level effects over young adulthood," MPIDR Working Papers WP-2019-017, Max Planck Institute for Demographic Research, Rostock, Germany.
    10. Alessandro Magrini, 2022. "Mediation analysis in recursive systems of distributed-lag linear regressions," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(3), pages 1535-1555, June.
    11. Bijlsma, Maarten J. & Tarkiainen, Lasse & Myrskylä, Mikko & Martikainen, Pekka, 2017. "Unemployment and subsequent depression: A mediation analysis using the parametric G-formula," Social Science & Medicine, Elsevier, vol. 194(C), pages 142-150.
    12. David G. Lugo‐Palacios & Jonathan M. Clarke & Søren Rud Kristensen, 2023. "Back to basics: A mediation analysis approach to addressing the fundamental questions of integrated care evaluations," Health Economics, John Wiley & Sons, Ltd., vol. 32(9), pages 2080-2097, September.
    13. Mats J. Stensrud & Jessica G. Young & Torben Martinussen, 2021. "Discussion on “Causal mediation of semicompeting risks” by Yen‐Tsung Huang," Biometrics, The International Biometric Society, vol. 77(4), pages 1160-1164, December.
    14. Cheng Lin & Adel Daoud & Maria Branden, 2022. "To What Extent Do Disadvantaged Neighborhoods Mediate Social Assistance Dependency? Evidence from Sweden," Papers 2206.04773, arXiv.org, revised Aug 2022.
    15. Annabelle Bédard & Zhen Li & Wassila Ait-hadad & Carlos A. Camargo & Bénédicte Leynaert & Christophe Pison & Orianne Dumas & Raphaëlle Varraso, 2021. "The Role of Nutritional Factors in Asthma: Challenges and Opportunities for Epidemiological Research," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    16. Wen Wei Loh & Beatrijs Moerkerke & Tom Loeys & Stijn Vansteelandt, 2022. "Nonlinear mediation analysis with high‐dimensional mediators whose causal structure is unknown," Biometrics, The International Biometric Society, vol. 78(1), pages 46-59, March.
    17. Bijlsma, Maarten J. & Wilson, Ben, 2020. "Modelling the socio-economic determinants of fertility: a mediation analysis using the parametric g-formula," LSE Research Online Documents on Economics 102414, London School of Economics and Political Science, LSE Library.
    18. McKetta, Sarah & Prins, Seth J. & Hasin, Deborah & Patrick, Megan E. & Keyes, Katherine M., 2022. "Structural sexism and Women's alcohol use in the United States, 1988–2016," Social Science & Medicine, Elsevier, vol. 301(C).
    19. Maarten J. Bijlsma & Ben Wilson, 2020. "Modelling the socio‐economic determinants of fertility: a mediation analysis using the parametric g‐formula," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 493-513, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Qin & Jonah Deutsch & Guanglei Hong, 2021. "Unpacking Complex Mediation Mechanisms And Their Heterogeneity Between Sites In A Job Corps Evaluation," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(1), pages 158-190, January.
    2. Guanglei Hong & Fan Yang & Xu Qin, 2023. "Posttreatment confounding in causal mediation studies: A cutting‐edge problem and a novel solution via sensitivity analysis," Biometrics, The International Biometric Society, vol. 79(2), pages 1042-1056, June.
    3. Soojin Park & Peter M. Steiner & David Kaplan, 2018. "Identification and Sensitivity Analysis for Average Causal Mediation Effects with Time-Varying Treatments and Mediators: Investigating the Underlying Mechanisms of Kindergarten Retention Policy," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 298-320, June.
    4. Soojin Park & Kevin M. Esterling, 2021. "Sensitivity Analysis for Pretreatment Confounding With Multiple Mediators," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 85-108, February.
    5. Haoyu Wei & Hengrui Cai & Chengchun Shi & Rui Song, 2024. "On Efficient Inference of Causal Effects with Multiple Mediators," Papers 2401.05517, arXiv.org.
    6. Samuel D. Lendle & Meenakshi S. Subbaraman & Mark J. van der Laan, 2013. "Identification and Efficient Estimation of the Natural Direct Effect among the Untreated," Biometrics, The International Biometric Society, vol. 69(2), pages 310-317, June.
    7. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    8. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    9. Martin Huber & Mark Schelker & Anthony Strittmatter, 2022. "Direct and Indirect Effects based on Changes-in-Changes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 432-443, January.
    10. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    11. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    12. Zhao, Yi & Luo, Xi, 2023. "Multilevel mediation analysis with structured unmeasured mediator-outcome confounding," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    13. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    14. Marco Doretti & Martina Raggi & Elena Stanghellini, 2022. "Exact parametric causal mediation analysis for a binary outcome with a binary mediator," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 87-108, March.
    15. Martin Huber, 2015. "Causal Pitfalls in the Decomposition of Wage Gaps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 179-191, April.
    16. Cai, Xizhen & Zhu, Yeying & Huang, Yuan & Ghosh, Debashis, 2022. "High-dimensional causal mediation analysis based on partial linear structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    17. Viviana Celli, 2022. "Causal mediation analysis in economics: Objectives, assumptions, models," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 214-234, February.
    18. Vanessa Didelez, 2019. "Defining causal mediation with a longitudinal mediator and a survival outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 593-610, October.
    19. Haiyan Liu & Ick Hoon Jin & Zhiyong Zhang & Ying Yuan, 2021. "Social Network Mediation Analysis: A Latent Space Approach," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 272-298, March.
    20. R. M. Daniel & B. L. De Stavola & S. N. Cousens & S. Vansteelandt, 2015. "Causal mediation analysis with multiple mediators," Biometrics, The International Biometric Society, vol. 71(1), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:79:y:2017:i:3:p:917-938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.