IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v142y2020ics0167947319301902.html
   My bibliography  Save this article

Sparse principal component based high-dimensional mediation analysis

Author

Listed:
  • Zhao, Yi
  • Lindquist, Martin A.
  • Caffo, Brian S.

Abstract

Causal mediation analysis aims to quantify the intermediate effect of a mediator on the causal pathway from treatment to outcome. When dealing with multiple mediators, which are potentially causally dependent, the possible decomposition of pathway effects grows exponentially with the number of mediators. An existing approach incorporated the principal component analysis (PCA) to address this challenge based on the fact that the transformed mediators are conditionally independent given the orthogonality of the principal components (PCs). However, the transformed mediator PCs, which are linear combinations of original mediators, can be difficult to interpret. A sparse high-dimensional mediation analysis approach is proposed which adopts the sparse PCA method to the mediation setting. The proposed approach is applied to a task-based functional magnetic resonance imaging study, illustrating its ability to detect biologically meaningful results related to an identified mediator.

Suggested Citation

  • Zhao, Yi & Lindquist, Martin A. & Caffo, Brian S., 2020. "Sparse principal component based high-dimensional mediation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301902
    DOI: 10.1016/j.csda.2019.106835
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319301902
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.106835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    2. Yi Zhao & Lexin Li & Brian S. Caffo, 2021. "Multimodal neuroimaging data integration and pathway analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 879-889, September.
    3. Jade Xiaoqing Wang & Yimei Li & Wilburn E. Reddick & Heather M. Conklin & John O. Glass & Arzu Onar‐Thomas & Amar Gajjar & Cheng Cheng & Zhao‐Hua Lu, 2023. "A high‐dimensional mediation model for a neuroimaging mediator: Integrating clinical, neuroimaging, and neurocognitive data to mitigate late effects in pediatric cancer," Biometrics, The International Biometric Society, vol. 79(3), pages 2430-2443, September.
    4. Wen Wei Loh & Beatrijs Moerkerke & Tom Loeys & Stijn Vansteelandt, 2022. "Nonlinear mediation analysis with high‐dimensional mediators whose causal structure is unknown," Biometrics, The International Biometric Society, vol. 78(1), pages 46-59, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.