IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i11p2385-d178733.html
   My bibliography  Save this article

Gene Expression Response in Peripheral Blood Cells of Petroleum Workers Exposed to Sub-Ppm Benzene Levels

Author

Listed:
  • Katarina M. Jørgensen

    (Department of Clinical Science, University of Bergen, P.O. Box 7804, N-5020 Bergen, Norway
    Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway)

  • Ellen Færgestad Mosleth

    (Nofima AS, Osloveien 1, N-1430 Ås, Norway)

  • Kristian Hovde Liland

    (Nofima AS, Osloveien 1, N-1430 Ås, Norway
    Faculty of Science and Technology, Norwegian University of Life Sciences, NO-1430 Ås, Norway)

  • Nancy B. Hopf

    (Institute for Work and Health (IST), Universities of Lausanne and Geneva, CH-1066 Lausanne-Epalinges, Switzerland)

  • Rita Holdhus

    (Department of Clinical Science, University of Bergen, P.O. Box 7804, N-5020 Bergen, Norway
    Department of Medical Genetics, Haukeland University Hospital, P.O. Box 1400, N-5021 Bergen, Norway)

  • Anne-Kristin Stavrum

    (Department of Clinical Science, University of Bergen, P.O. Box 7804, N-5020 Bergen, Norway
    Department of Medical Genetics, Haukeland University Hospital, P.O. Box 1400, N-5021 Bergen, Norway)

  • Bjørn Tore Gjertsen

    (Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, P.O. Box 7804, N-5020 Bergen, Norway)

  • Jorunn Kirkeleit

    (Department of Clinical Science, University of Bergen, P.O. Box 7804, N-5020 Bergen, Norway
    Department of Global Public Health and Primary Care, University of Bergen, P.O. Box 7804, N-5020 Bergen, Norway)

Abstract

Altered gene expression in pathways relevant to leukaemogenesis, as well as reduced levels of circulating lymphocytes, have been reported in workers that were exposed to benzene concentrations below 1 ppm. In this study, we analysed whole blood global gene expression patterns in a worker cohort with altered levels of T cells and immunoglobulins IgM and IgA at three time points; pre-shift, post-shift (after three days), and post-recovery (12 hours later). Eight benzene exposed tank workers performing maintenance work in crude oil cargo tanks with a mean benzene exposure of 0.3 ppm (range 0.1–0.5 ppm) and five referents considered to be unexposed were examined by gene expression arrays. By using our data as independent validation, we reanalysed selected genes that were reported to be altered from previous studies of workers being exposed to sub-ppm benzene levels Four out of six genes previously proposed as marker genes in chronically exposed workers separated benzene exposed workers from unexposed referents (CLEC5, ACSL1, PRG2, IFNB1). Even better separation of benzene exposed workers and referents was observed for short-term exposure for genes in the Jak-STAT pathway, particularly elevated expression of IL6 and reduced expression of IL19.

Suggested Citation

  • Katarina M. Jørgensen & Ellen Færgestad Mosleth & Kristian Hovde Liland & Nancy B. Hopf & Rita Holdhus & Anne-Kristin Stavrum & Bjørn Tore Gjertsen & Jorunn Kirkeleit, 2018. "Gene Expression Response in Peripheral Blood Cells of Petroleum Workers Exposed to Sub-Ppm Benzene Levels," IJERPH, MDPI, vol. 15(11), pages 1-18, October.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2385-:d:178733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/11/2385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/11/2385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    2. Federica Rota & Anastasia Conti & Laura Campo & Chiara Favero & Laura Cantone & Valeria Motta & Elisa Polledri & Rosa Mercadante & Giorgio Dieci & Valentina Bollati & Silvia Fustinoni, 2018. "Epigenetic and Transcriptional Modifications in Repetitive Elements in Petrol Station Workers Exposed to Benzene and MTBE," IJERPH, MDPI, vol. 15(4), pages 1-14, April.
    3. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    4. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    3. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    4. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    5. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    6. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    7. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    8. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    9. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    10. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    11. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    12. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    13. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    14. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    16. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    17. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    18. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    19. Abhinav Kaushik & Diane Dunham & Xiaorui Han & Evan Do & Sandra Andorf & Sheena Gupta & Andrea Fernandes & Laurie Elizabeth Kost & Sayantani B. Sindher & Wong Yu & Mindy Tsai & Robert Tibshirani & Sco, 2022. "CD8+ T cell differentiation status correlates with the feasibility of sustained unresponsiveness following oral immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2385-:d:178733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.