IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p392-402.html
   My bibliography  Save this article

A spatial open‐population capture‐recapture model

Author

Listed:
  • Murray G. Efford
  • Matthew R. Schofield

Abstract

A spatial open‐population capture‐recapture model is described that extends both the non‐spatial open‐population model of Schwarz and Arnason and the spatially explicit closed‐population model of Borchers and Efford. The superpopulation of animals available for detection at some time during a study is conceived as a two‐dimensional Poisson point process. Individual probabilities of birth and death follow the conventional open‐population model. Movement between sampling times may be modeled with a dispersal kernel using a recursive Markovian algorithm. Observations arise from distance‐dependent sampling at an array of detectors. As in the closed‐population spatial model, the observed data likelihood relies on integration over the unknown animal locations; maximization of this likelihood yields estimates of the birth, death, movement, and detection parameters. The models were fitted to data from a live‐trapping study of brushtail possums (Trichosurus vulpecula) in New Zealand. Simulations confirmed that spatial modeling can greatly reduce the bias of capture‐recapture survival estimates and that there is a degree of robustness to misspecification of the dispersal kernel. An R package is available that includes various extensions.

Suggested Citation

  • Murray G. Efford & Matthew R. Schofield, 2020. "A spatial open‐population capture‐recapture model," Biometrics, The International Biometric Society, vol. 76(2), pages 392-402, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:392-402
    DOI: 10.1111/biom.13150
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13150
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Guttorp & Walter W. Piegorsch & B. J. Reich & B. Gardner, 2014. "A spatial capture‐recapture model for territorial species," Environmetrics, John Wiley & Sons, Ltd., vol. 25(8), pages 630-637, December.
    2. Jesse Whittington & Michael A Sawaya, 2015. "A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    3. D. L. Borchers & M. G. Efford, 2008. "Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 64(2), pages 377-385, June.
    4. Richard Glennie & David L. Borchers & Matthew Murchie & Bart J. Harmsen & Rebecca J. Foster, 2019. "Open population maximum likelihood spatial capture‐recapture," Biometrics, The International Biometric Society, vol. 75(4), pages 1345-1355, December.
    5. Slone, D.H., 2011. "Increasing accuracy of dispersal kernels in grid-based population models," Ecological Modelling, Elsevier, vol. 222(3), pages 573-579.
    6. William A. Link & Richard J. Barker, 2005. "Modeling Association among Demographic Parameters in Analysis of Open Population Capture–Recapture Data," Biometrics, The International Biometric Society, vol. 61(1), pages 46-54, March.
    7. William L. Kendall & Rhema Bjorkland, 2001. "Using Open Robust Design Models to Estimate Temporary Emigration from Capture—Recapture Data," Biometrics, The International Biometric Society, vol. 57(4), pages 1113-1122, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. G. Efford, 2022. "Efficient Discretization of Movement Kernels for Spatiotemporal Capture–Recapture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 641-651, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul McLaughlin & Haim Bar, 2021. "A spatial capture–recapture model with attractions between individuals," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    2. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    3. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    4. Simone Tenan & Paolo Pedrini & Natalia Bragalanti & Claudio Groff & Chris Sutherland, 2017. "Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-18, October.
    5. Richard Huggins & Jakub Stoklosa & Cameron Roach & Paul Yip, 2018. "Estimating the size of an open population using sparse capture–recapture data," Biometrics, The International Biometric Society, vol. 74(1), pages 280-288, March.
    6. M. G. Efford, 2022. "Efficient Discretization of Movement Kernels for Spatiotemporal Capture–Recapture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 641-651, December.
    7. Nathan J Hostetter & Nicholas J Lunn & Evan S Richardson & Eric V Regehr & Sarah J Converse, 2021. "Age-structured Jolly-Seber model expands inference and improves parameter estimation from capture-recapture data," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-19, June.
    8. Gimenez, Olivier & Lebreton, Jean-Dominique & Gaillard, Jean-Michel & Choquet, Rémi & Pradel, Roger, 2012. "Estimating demographic parameters using hidden process dynamic models," Theoretical Population Biology, Elsevier, vol. 82(4), pages 307-316.
    9. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    10. Dennis, Emily B. & Kéry, Marc & Morgan, Byron J.T. & Coray, Armin & Schaub, Michael & Baur, Bruno, 2021. "Integrated modelling of insect population dynamics at two temporal scales," Ecological Modelling, Elsevier, vol. 441(C).
    11. Tomáš Jůnek & Pavla Jůnková Vymyslická & Kateřina Hozdecká & Pavla Hejcmanová, 2015. "Application of Spatial and Closed Capture-Recapture Models on Known Population of the Western Derby Eland (Taurotragus derbianus derbianus) in Senegal," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-16, September.
    12. Robert M. Dorazio, 2020. "Objective prior distributions for Jolly‐Seber models of zero‐augmented data," Biometrics, The International Biometric Society, vol. 76(4), pages 1285-1296, December.
    13. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    14. Joseph B Pfaller & Karen A Bjorndal & Milani Chaloupka & Kristina L Williams & Michael G Frick & Alan B Bolten, 2013. "Accounting for Imperfect Detection Is Critical for Inferring Marine Turtle Nesting Population Trends," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-5, April.
    15. Laura Cowen & Carl J. Schwarz, 2006. "The Jolly–Seber Model with Tag Loss," Biometrics, The International Biometric Society, vol. 62(3), pages 699-705, September.
    16. Manuel Wiesenfarth & Carlos Matías Hisgen & Thomas Kneib & Carmen Cadarso-Suarez, 2014. "Bayesian Nonparametric Instrumental Variables Regression Based on Penalized Splines and Dirichlet Process Mixtures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 468-482, July.
    17. D. L. Borchers & B. C. Stevenson & D. Kidney & L. Thomas & T. A. Marques, 2015. "A Unifying Model for Capture-Recapture and Distance Sampling Surveys of Wildlife Populations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 195-204, March.
    18. Roger Pradel & Rémi Choquet & Arnaud Béchet, 2012. "Breeding Experience Might Be a Major Determinant of Breeding Probability in Long-Lived Species: The Case of the Greater Flamingo," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    19. Murray G. Efford & Christine M. Hunter, 2018. "Spatial capture–mark–resight estimation of animal population density," Biometrics, The International Biometric Society, vol. 74(2), pages 411-420, June.
    20. Nathan J Crum & Lisa C Neyman & Timothy A Gowan, 2021. "Abundance estimation for line transect sampling: A comparison of distance sampling and spatial capture-recapture models," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-17, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:392-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.