IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i3d10.1007_s13253-023-00563-0.html
   My bibliography  Save this article

Accommodating False Positives Within Acoustic Spatial Capture–Recapture, with Variable Source Levels, Noisy Bearings and an Inhomogeneous Spatial Density

Author

Listed:
  • Felix T. Petersma

    (University of St Andrews)

  • Len Thomas

    (University of St Andrews)

  • Aaron M. Thode

    (University of California San Diego)

  • Danielle Harris

    (University of St Andrews)

  • Tiago A. Marques

    (University of St Andrews
    Faculdade de Ciências da Universidade de Lisboa)

  • Gisela V. Cheoo

    (Faculdade de Ciências da Universidade de Lisboa)

  • Katherine H. Kim

    (Greeneridge Sciences, Inc.)

Abstract

Passive acoustic monitoring is a promising method for surveying wildlife populations that are easier to detect acoustically than visually. When animal vocalisations can be uniquely identified on an array of sensors, the potential exists to estimate population density through acoustic spatial capture–recapture (ASCR). However, sound classification is imperfect, and in some situations, a high proportion of sounds detected on just a single sensor (‘singletons’) are not from the target species. We present a case study of bowhead whale calls (Baleana mysticetus) collected in the Beaufort Sea in 2010 containing such false positives. We propose a novel extension of ASCR that is robust to false positives by truncating singletons and conditioning on calls being detected by at least two sensors. We allow for individual-level detection heterogeneity through modelling a variable sound source level, model inhomogeneous call spatial density, and include bearings with varying measurement error. We show via simulation that the method produces near-unbiased estimates when correctly specified. Ignoring source-level variation resulted in a strong negative bias, while ignoring inhomogeneous density resulted in severe positive bias. The case study analysis indicated a band of higher call density approximately 30 km from shore; 59.8% of singletons were estimated to have been false positives.

Suggested Citation

  • Felix T. Petersma & Len Thomas & Aaron M. Thode & Danielle Harris & Tiago A. Marques & Gisela V. Cheoo & Katherine H. Kim, 2024. "Accommodating False Positives Within Acoustic Spatial Capture–Recapture, with Variable Source Levels, Noisy Bearings and an Inhomogeneous Spatial Density," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 471-490, September.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:3:d:10.1007_s13253-023-00563-0
    DOI: 10.1007/s13253-023-00563-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00563-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00563-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:3:d:10.1007_s13253-023-00563-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.