IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v66y2014i4p687-702.html
   My bibliography  Save this article

Identification and estimation of superposed Neyman–Scott spatial cluster processes

Author

Listed:
  • Ushio Tanaka
  • Yosihiko Ogata

Abstract

This paper proposes an estimation method for superposed spatial point patterns of Neyman–Scott cluster processes of different distance scales and cluster sizes. Unlike the ordinary single Neyman–Scott model, the superposed process of Neyman–Scott models is not identified solely by the second-order moment property of the process. To solve the identification problem, we use the nearest neighbor distance property in addition to the second-order moment property. In the present procedure, we combine an inhomogeneous Poisson likelihood based on the Palm intensity with another likelihood function based on the nearest neighbor property. The derivative of the nearest neighbor distance function is regarded as the intensity function of the rotation invariant inhomogeneous Poisson point process. The present estimation procedure is applied to two sets of ecological location data. Copyright The Institute of Statistical Mathematics, Tokyo 2014

Suggested Citation

  • Ushio Tanaka & Yosihiko Ogata, 2014. "Identification and estimation of superposed Neyman–Scott spatial cluster processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 687-702, August.
  • Handle: RePEc:spr:aistmt:v:66:y:2014:i:4:p:687-702
    DOI: 10.1007/s10463-013-0431-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-013-0431-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-013-0431-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    2. Guan, Yongtao, 2006. "A Composite Likelihood Approach in Fitting Spatial Point Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1502-1512, December.
    3. Jesper Møller & Rasmus P. Waagepetersen, 2007. "Modern Statistics for Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 643-684, December.
    4. Tomáš Mrkvička & Ilya Molchanov, 2005. "Optimisation of linear unbiased intensity estimators for point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 71-81, March.
    5. M. N. M. van Lieshout & A. J. Baddeley, 1996. "A nonparametric measure of spatial interaction in point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 50(3), pages 344-361, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
    2. Frédéric Lavancier & Arnaud Poinas & Rasmus Waagepetersen, 2021. "Adaptive estimating function inference for nonstationary determinantal point processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 87-107, March.
    3. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    4. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    5. Jean-François Coeurjolly, 2017. "Median-based estimation of the intensity of a spatial point process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 303-331, April.
    6. Ben C. Stevenson & David L. Borchers & Rachel M. Fewster, 2019. "Cluster capture‐recapture to account for identification uncertainty on aerial surveys of animal populations," Biometrics, The International Biometric Society, vol. 75(1), pages 326-336, March.
    7. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    8. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    9. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    10. Ramiadantsoa, Tanjona & Hanski, Ilkka & Ovaskainen, Otso, 2018. "Responses of generalist and specialist species to fragmented landscapes," Theoretical Population Biology, Elsevier, vol. 124(C), pages 31-40.
    11. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    12. Møller, Jesper & Torrisi, Giovanni Luca, 2007. "The pair correlation function of spatial Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 995-1003, June.
    13. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    14. Pawlas, Zbynek & Honzl, Ondrej, 2010. "Comparison of length-intensity estimators for segment processes," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 825-833, May.
    15. repec:jss:jstsof:12:i06 is not listed on IDEAS
    16. Coeurjolly, Jean-François, 2015. "Almost sure behavior of functionals of stationary Gibbs point processes," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 241-246.
    17. Jan Povala & Seppo Virtanen & Mark Girolami, 2020. "Burglary in London: insights from statistical heterogeneous spatial point processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1067-1090, November.
    18. Katharina Parry & David P. Watling & Martin L. Hazelton, 2016. "A new class of doubly stochastic day-to-day dynamic traffic assignment models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 5-23, March.
    19. Jean-François Coeurjolly & Jesper Møller & Rasmus Waagepetersen, 2017. "A Tutorial on Palm Distributions for Spatial Point Processes," International Statistical Review, International Statistical Institute, vol. 85(3), pages 404-420, December.
    20. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    21. Kenneth A. Flagg & Andrew Hoegh & John J. Borkowski, 2020. "Modeling Partially Surveyed Point Process Data: Inferring Spatial Point Intensity of Geomagnetic Anomalies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 186-205, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:66:y:2014:i:4:p:687-702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.