IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v64y2008i2p377-385.html
   My bibliography  Save this article

Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies

Author

Listed:
  • D. L. Borchers
  • M. G. Efford

Abstract

No abstract is available for this item.

Suggested Citation

  • D. L. Borchers & M. G. Efford, 2008. "Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 64(2), pages 377-385, June.
  • Handle: RePEc:bla:biomet:v:64:y:2008:i:2:p:377-385
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2007.00927.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert M. Dorazio & J. Andrew Royle, 2003. "Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals," Biometrics, The International Biometric Society, vol. 59(2), pages 351-364, June.
    2. Shirley Pledger, 2000. "Unified Maximum Likelihood Estimates for Closed Capture–Recapture Models Using Mixtures," Biometrics, The International Biometric Society, vol. 56(2), pages 434-442, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    2. Dey, Soumen & Moqanaki, Ehsan & Milleret, Cyril & Dupont, Pierre & Tourani, Mahdieh & Bischof, Richard, 2023. "Modelling spatially autocorrelated detection probabilities in spatial capture-recapture using random effects," Ecological Modelling, Elsevier, vol. 479(C).
    3. Juan Manuel Morales & Agustina Virgilio & María Delgado & Otso Ovaskainen, 2017. "A General Approach to Model Movement in (Highly) Fragmented Patch Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 393-412, September.
    4. Robert M Dorazio, 2013. "Bayes and Empirical Bayes Estimators of Abundance and Density from Spatial Capture-Recapture Data," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    5. D. L. Borchers & B. C. Stevenson & D. Kidney & L. Thomas & T. A. Marques, 2015. "A Unifying Model for Capture-Recapture and Distance Sampling Surveys of Wildlife Populations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 195-204, March.
    6. Bart J Harmsen & Rebecca J Foster & Howard Quigley, 2020. "Spatially explicit capture recapture density estimates: Robustness, accuracy and precision in a long-term study of jaguars (Panthera onca)," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    7. Simone Tenan & Paolo Pedrini & Natalia Bragalanti & Claudio Groff & Chris Sutherland, 2017. "Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-18, October.
    8. Murray G. Efford & Christine M. Hunter, 2018. "Spatial capture–mark–resight estimation of animal population density," Biometrics, The International Biometric Society, vol. 74(2), pages 411-420, June.
    9. Michael R. Whitehead & Rod Peakall, 2013. "Short-term but not long-term patch avoidance in an orchid-pollinating solitary wasp," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(1), pages 162-168.
    10. Tomáš Jůnek & Pavla Jůnková Vymyslická & Kateřina Hozdecká & Pavla Hejcmanová, 2015. "Application of Spatial and Closed Capture-Recapture Models on Known Population of the Western Derby Eland (Taurotragus derbianus derbianus) in Senegal," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-16, September.
    11. Russell, Robin E. & Walsh, Daniel P. & Samuel, Michael D. & Grunnill, Martin D. & Rocke, Tonie E., 2021. "Space matters: host spatial structure and the dynamics of plague transmission," Ecological Modelling, Elsevier, vol. 443(C).
    12. Xinhai Li & Ning Li & Baidu Li & Yuehua Sun & Erhu Gao, 2022. "AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models," Land, MDPI, vol. 11(5), pages 1-13, April.
    13. David L. Borchers & Tiago A. Marques, 2017. "From distance sampling to spatial capture–recapture," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 475-494, October.
    14. Simon J. Bonner & Wei Zhang & Jiaqi Mu, 2024. "On the identifiability of the trinomial model for mark‐recapture‐recovery studies," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    15. Murray G. Efford & Matthew R. Schofield, 2020. "A spatial open‐population capture‐recapture model," Biometrics, The International Biometric Society, vol. 76(2), pages 392-402, June.
    16. Paul McLaughlin & Haim Bar, 2021. "A spatial capture–recapture model with attractions between individuals," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    17. Felix T. Petersma & Len Thomas & Aaron M. Thode & Danielle Harris & Tiago A. Marques & Gisela V. Cheoo & Katherine H. Kim, 2024. "Accommodating False Positives Within Acoustic Spatial Capture–Recapture, with Variable Source Levels, Noisy Bearings and an Inhomogeneous Spatial Density," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 471-490, September.
    18. Ben C. Stevenson & David L. Borchers & Rachel M. Fewster, 2019. "Cluster capture‐recapture to account for identification uncertainty on aerial surveys of animal populations," Biometrics, The International Biometric Society, vol. 75(1), pages 326-336, March.
    19. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    20. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    21. Mehnaz Jahid & Holly N. Steeves & Jason T. Fisher & Simon J. Bonner & Saman Muthukumarana & Laura L. E. Cowen, 2023. "Shooting for abundance: Comparing integrated multi‐sampling models for camera trap and hair trap data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    22. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    23. M. G. Efford, 2022. "Efficient Discretization of Movement Kernels for Spatiotemporal Capture–Recapture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 641-651, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    2. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    3. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    4. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    5. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.
    6. Francesco Bartolucci & Monia Lupparelli, 2008. "Focused Information Criterion for Capture–Recapture Models for Closed Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 629-649, December.
    7. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    8. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    9. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.
    10. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2021. "Joint Modeling of Distances and Times in Point-Count Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 289-305, June.
    11. Thandrayen, Joanne & Wang, Yan, 2009. "A latent variable regression model for capture-recapture data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2740-2746, May.
    12. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    13. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
    14. Richard Arnold & Yu Hayakawa & Paul Yip, 2010. "Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension," Biometrics, The International Biometric Society, vol. 66(2), pages 644-655, June.
    15. Chang Xuan Mao & Robert K. Colwell & Jing Chang, 2005. "Estimating the Species Accumulation Curve Using Mixtures," Biometrics, The International Biometric Society, vol. 61(2), pages 433-441, June.
    16. Robert M. Dorazio & J. Andrew Royle, 2005. "Rejoinder to "The Performance of Mixture Models in Heterogeneous Closed Population Capture-Recapture"," Biometrics, The International Biometric Society, vol. 61(3), pages 874-876, September.
    17. Shirley Pledger & Kenneth H. Pollock & James L. Norris, 2010. "Open Capture–Recapture Models with Heterogeneity: II. Jolly–Seber Model," Biometrics, The International Biometric Society, vol. 66(3), pages 883-890, September.
    18. Shirley Pledger, 2005. "The Performance of Mixture Models in Heterogeneous Closed Population Capture–Recapture," Biometrics, The International Biometric Society, vol. 61(3), pages 868-873, September.
    19. R. King & S. P. Brooks, 2008. "On the Bayesian Estimation of a Closed Population Size in the Presence of Heterogeneity and Model Uncertainty," Biometrics, The International Biometric Society, vol. 64(3), pages 816-824, September.
    20. Hannah Worthington & Rachel S. McCrea & Ruth King & Richard A. Griffiths, 2019. "Estimation of Population Size When Capture Probability Depends on Individual States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 154-172, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:64:y:2008:i:2:p:377-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.