IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1294-1304.html
   My bibliography  Save this article

Estimation in closed capture–recapture models when covariates are missing at random

Author

Listed:
  • Shen‐Ming Lee
  • Wen‐Han Hwang
  • Jean de Dieu Tapsoba

Abstract

Individual covariates are commonly used in capture–recapture models as they can provide important information for population size estimation. However, in practice, one or more covariates may be missing at random for some individuals, which can lead to unreliable inference if records with missing data are treated as missing completely at random. We show that, in general, such a naive complete‐case analysis in closed capture–recapture models with some covariates missing at random underestimates the population size. We develop methods for estimating regression parameters and population size using regression calibration, inverse probability weighting, and multiple imputation without any distributional assumptions about the covariates. We show that the inverse probability weighting and multiple imputation approaches are asymptotically equivalent. We present a simulation study to investigate the effects of missing covariates and to evaluate the performance of the proposed methods. We also illustrate an analysis using data on the bird species yellow‐bellied prinia collected in Hong Kong.

Suggested Citation

  • Shen‐Ming Lee & Wen‐Han Hwang & Jean de Dieu Tapsoba, 2016. "Estimation in closed capture–recapture models when covariates are missing at random," Biometrics, The International Biometric Society, vol. 72(4), pages 1294-1304, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1294-1304
    DOI: 10.1111/biom.12498
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12498
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Y. Wang & Hua Yun Chen, 2001. "Augmented Inverse Probability Weighted Estimator for Cox Missing Covariate Regression," Biometrics, The International Biometric Society, vol. 57(2), pages 414-419, June.
    2. E. A. Catchpole & B. J. T. Morgan & G. Tavecchia, 2008. "A new method for analysing discrete life history data with missing covariate values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 445-460, April.
    3. Jun Li & Yao Yu, 2015. "A Nonparametric Test of Missing Completely at Random for Incomplete Multivariate Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 707-726, September.
    4. Richard Huggins & Wen‐Han Hwang, 2011. "A Review of the Use of Conditional Likelihood in Capture‐Recapture Experiments," International Statistical Review, International Statistical Institute, vol. 79(3), pages 385-400, December.
    5. Simon J. Bonner & Byron J. T. Morgan & Ruth King, 2010. "Continuous Covariates in Mark-Recapture-Recovery Analysis: A Comparison of Methods," Biometrics, The International Biometric Society, vol. 66(4), pages 1256-1265, December.
    6. Kenneth Pollock, 2002. "The use of auxiliary variables in capture-recapture modelling: An overview," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(1-4), pages 85-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yang & Zhang, Xiuzhen & Li, Mengke & Liu, Guanfu & Zhu, Lin, 2019. "Abundance estimation based on optimal estimating function with missing covariates in capture–recapture studies," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 15-20.
    2. Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
    3. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    4. Yang Liu & Yukun Liu & Pengfei Li & Lin Zhu, 2021. "Maximum likelihood abundance estimation from capture‐recapture data when covariates are missing at random," Biometrics, The International Biometric Society, vol. 77(3), pages 1050-1060, September.
    5. Buu-Chau Truong & Nguyen Van Thuan & Nguyen Huu Hau & Michael McAleer, 2019. "Applications of the Newton-Raphson Method in Decision Sciences and Education," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(4), pages 52-80, December.
    6. Shen-Ming Lee & Truong-Nhat Le & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods," Computational Statistics, Springer, vol. 38(2), pages 899-934, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    2. Simon J. Bonner & Byron J. T. Morgan & Ruth King, 2010. "Continuous Covariates in Mark-Recapture-Recovery Analysis: A Comparison of Methods," Biometrics, The International Biometric Society, vol. 66(4), pages 1256-1265, December.
    3. Blanca Sarzo & Ruth King & David Conesa & Jonas Hentati-Sundberg, 2021. "Correcting Bias in Survival Probabilities for Partially Monitored Populations via Integrated Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 200-219, June.
    4. Stoklosa, Jakub & Dann, Peter & Huggins, Richard M. & Hwang, Wen-Han, 2016. "Estimation of survival and capture probabilities in open population capture–recapture models when covariates are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 74-86.
    5. Torben Martinussen & Klaus K. Holst & Thomas H. Scheike, 2016. "Cox regression with missing covariate data using a modified partial likelihood method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 570-588, October.
    6. Oliver, Lauren J. & Morgan, Byron J.T. & Durant, Sarah M. & Pettorelli, Nathalie, 2011. "Individual heterogeneity in recapture probability and survival estimates in cheetah," Ecological Modelling, Elsevier, vol. 222(3), pages 776-784.
    7. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    8. O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
    9. Yanyao Yi & Ting Ye & Menggang Yu & Jun Shao, 2020. "Cox regression with survival‐time‐dependent missing covariate values," Biometrics, The International Biometric Society, vol. 76(2), pages 460-471, June.
    10. Sun, Zhihua & Wang, Qihua & Dai, Pengjie, 2009. "Model checking for partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 636-651, April.
    11. Nobumichi Shutoh & Takahiro Nishiyama & Masashi Hyodo, 2017. "Bartlett correction to the likelihood ratio test for MCAR with two-step monotone sample," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(3), pages 184-199, August.
    12. Simone Vincenzi & Marc Mangel & Alain J Crivelli & Stephan Munch & Hans J Skaug, 2014. "Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-16, September.
    13. Lihong Qi & Xu Zhang & Yanqing Sun & Lu Wang & Yichuan Zhao, 2019. "Weighted estimating equations for additive hazards models with missing covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 365-387, April.
    14. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    15. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    16. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    17. Donglin Zeng & Qingxia Chen, 2010. "Adjustment for Missingness Using Auxiliary Information in Semiparametric Regression," Biometrics, The International Biometric Society, vol. 66(1), pages 115-122, March.
    18. Huang, Bin & Wang, Qihua, 2010. "Semiparametric analysis based on weighted estimating equations for transformation models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2078-2090, October.
    19. John Ashton & Tim Burnett & Ivan Diaz Rainey & Peter L. Ormosi, 2018. "Has the financial regulatory environment improved in the UK? Capture-Recapture approach to estimate detection and deterrence," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-03, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    20. Shanshan Li & Yang Ning, 2015. "Estimation of covariate‐specific time‐dependent ROC curves in the presence of missing biomarkers," Biometrics, The International Biometric Society, vol. 71(3), pages 666-676, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1294-1304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.