IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p460-471.html
   My bibliography  Save this article

Cox regression with survival‐time‐dependent missing covariate values

Author

Listed:
  • Yanyao Yi
  • Ting Ye
  • Menggang Yu
  • Jun Shao

Abstract

Analysis with time‐to‐event data in clinical and epidemiological studies often encounters missing covariate values, and the missing at random assumption is commonly adopted, which assumes that missingness depends on the observed data, including the observed outcome which is the minimum of survival and censoring time. However, it is conceivable that in certain settings, missingness of covariate values is related to the survival time but not to the censoring time. This is especially so when covariate missingness is related to an unmeasured variable affected by the patient's illness and prognosis factors at baseline. If this is the case, then the covariate missingness is not at random as the survival time is censored, and it creates a challenge in data analysis. In this article, we propose an approach to deal with such survival‐time‐dependent covariate missingness based on the well known Cox proportional hazard model. Our method is based on inverse propensity weighting with the propensity estimated by nonparametric kernel regression. Our estimators are consistent and asymptotically normal, and their finite‐sample performance is examined through simulation. An application to a real‐data example is included for illustration.

Suggested Citation

  • Yanyao Yi & Ting Ye & Menggang Yu & Jun Shao, 2020. "Cox regression with survival‐time‐dependent missing covariate values," Biometrics, The International Biometric Society, vol. 76(2), pages 460-471, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:460-471
    DOI: 10.1111/biom.13155
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13155
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James M. Robins & Dianne M. Finkelstein, 2000. "Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests," Biometrics, The International Biometric Society, vol. 56(3), pages 779-788, September.
    2. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    3. Qi, Lihong & Wang, C.Y. & Prentice, Ross L., 2005. "Weighted Estimators for Proportional Hazards Regression With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1250-1263, December.
    4. C. Y. Wang & Hua Yun Chen, 2001. "Augmented Inverse Probability Weighted Estimator for Cox Missing Covariate Regression," Biometrics, The International Biometric Society, vol. 57(2), pages 414-419, June.
    5. Xu, Qiang & Paik, Myunghee Cho & Luo, Xiaodong & Tsai, Wei-Yann, 2009. "Reweighting Estimators for Cox Regression With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1155-1167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben Martinussen & Klaus K. Holst & Thomas H. Scheike, 2016. "Cox regression with missing covariate data using a modified partial likelihood method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 570-588, October.
    2. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    3. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Shanshan Li & Yang Ning, 2015. "Estimation of covariate‐specific time‐dependent ROC curves in the presence of missing biomarkers," Biometrics, The International Biometric Society, vol. 71(3), pages 666-676, September.
    5. Na Hu & Xuerong Chen & Jianguo Sun, 2015. "Regression Analysis of Length-biased and Right-censored Failure Time Data with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 438-452, June.
    6. Huang, Bin & Wang, Qihua, 2010. "Semiparametric analysis based on weighted estimating equations for transformation models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2078-2090, October.
    7. Menggang Yu & Bin Nan, 2010. "Regression Calibration in Semiparametric Accelerated Failure Time Models," Biometrics, The International Biometric Society, vol. 66(2), pages 405-414, June.
    8. Soyoung Kim & Jae-Kwang Kim & Kwang Woo Ahn, 2022. "A calibrated Bayesian method for the stratified proportional hazards model with missing covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 169-193, April.
    9. Chi-Chung Wen & Chien-Tai Lin, 2011. "Analysis of Current Status Data with Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 760-769, September.
    10. Xiaolin Chen & Jianwen Cai, 2018. "Reweighted estimators for additive hazard model with censoring indicators missing at random," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 224-249, April.
    11. Lihong Qi & Xu Zhang & Yanqing Sun & Lu Wang & Yichuan Zhao, 2019. "Weighted estimating equations for additive hazards models with missing covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 365-387, April.
    12. Donglin Zeng & Qingxia Chen, 2010. "Adjustment for Missingness Using Auxiliary Information in Semiparametric Regression," Biometrics, The International Biometric Society, vol. 66(1), pages 115-122, March.
    13. Delgado, Michael S. & McCloud, Nadine & Kumbhakar, Subal C., 2014. "A generalized empirical model of corruption, foreign direct investment, and growth," Journal of Macroeconomics, Elsevier, vol. 42(C), pages 298-316.
    14. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    15. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    16. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    17. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    18. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2017. "Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis," Energy Economics, Elsevier, vol. 62(C), pages 347-356.
    19. Bos, Martijn & Demirer, Riza & Gupta, Rangan & Tiwari, Aviral Kumar, 2018. "Oil returns and volatility: The role of mergers and acquisitions," Energy Economics, Elsevier, vol. 71(C), pages 62-69.
    20. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:460-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.