IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v70y2008i2p445-460.html
   My bibliography  Save this article

A new method for analysing discrete life history data with missing covariate values

Author

Listed:
  • E. A. Catchpole
  • B. J. T. Morgan
  • G. Tavecchia

Abstract

Summary. Regular censusing of wild animal populations produces data for estimating their annual survival. However, there can be missing covariate data; for instance time varying covariates that are measured on individual animals often contain missing values. By considering the transitions that occur from each occasion to the next, we derive a novel expression for the likelihood for mark–recapture–recovery data, which is equivalent to the traditional likelihood in the case where no covariate data are missing, and which provides a natural way of dealing with covariate data that are missing, for whatever reason. Unlike complete‐case analysis, this approach does not exclude incompletely observed life histories, uses all available data and produces consistent estimators. In a simulation study it performs better overall than alternative methods when there are missing covariate data.

Suggested Citation

  • E. A. Catchpole & B. J. T. Morgan & G. Tavecchia, 2008. "A new method for analysing discrete life history data with missing covariate values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 445-460, April.
  • Handle: RePEc:bla:jorssb:v:70:y:2008:i:2:p:445-460
    DOI: 10.1111/j.1467-9868.2007.00644.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00644.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00644.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon J. Bonner & Byron J. T. Morgan & Ruth King, 2010. "Continuous Covariates in Mark-Recapture-Recovery Analysis: A Comparison of Methods," Biometrics, The International Biometric Society, vol. 66(4), pages 1256-1265, December.
    2. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    3. Simon J. Bonner & Wei Zhang & Jiaqi Mu, 2024. "On the identifiability of the trinomial model for mark‐recapture‐recovery studies," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    4. Stoklosa, Jakub & Dann, Peter & Huggins, Richard M. & Hwang, Wen-Han, 2016. "Estimation of survival and capture probabilities in open population capture–recapture models when covariates are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 74-86.
    5. Shen‐Ming Lee & Wen‐Han Hwang & Jean de Dieu Tapsoba, 2016. "Estimation in closed capture–recapture models when covariates are missing at random," Biometrics, The International Biometric Society, vol. 72(4), pages 1294-1304, December.
    6. Blanca Sarzo & Ruth King & David Conesa & Jonas Hentati-Sundberg, 2021. "Correcting Bias in Survival Probabilities for Partially Monitored Populations via Integrated Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 200-219, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:2:p:445-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.