IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i3d10.1007_s11749-024-00921-1.html
   My bibliography  Save this article

Two-step semiparametric empirical likelihood inference from capture–recapture data with missing covariates

Author

Listed:
  • Yang Liu

    (Soochow University)

  • Yukun Liu

    (East China Normal University)

  • Pengfei Li

    (University of Waterloo)

  • Riquan Zhang

    (Shanghai University of International Business and Economics)

Abstract

Missing covariates are not uncommon in capture–recapture studies. When covariate information is missing at random in capture–recapture data, an empirical full likelihood method has been demonstrated to outperform conditional-likelihood-based methods in abundance estimation. However, the fully observed covariates must be discrete, and the method is not directly applicable to continuous-time capture–recapture data. Based on the Binomial and Poisson regression models, we propose a two-step semiparametric empirical likelihood approach for abundance estimation in the presence of missing covariates, regardless of whether the fully observed covariates are discrete or continuous. We show that the maximum semiparametric empirical likelihood estimators for the underlying parameters and the abundance are asymptotically normal, and more efficient than the counterpart for a completely known non-missingness probability. After scaling, the empirical likelihood ratio test statistic for abundance follows a limiting chi-square distribution with one degree of freedom. The proposed approach is further extended to one-inflated count regression models, and a score-like test is constructed to assess whether one-inflation exists among the number of captures. Our simulation shows that, compared with the previous method, the proposed method not only performs better in correcting bias, but also has a more accurate coverage in the presence of fully observed continuous covariates, although there may be a slight efficiency loss when the fully observed covariates are only discrete. The performance of the new method is illustrated by analyses of the yellow-bellied prinia data and the rana pretiosa data.

Suggested Citation

  • Yang Liu & Yukun Liu & Pengfei Li & Riquan Zhang, 2024. "Two-step semiparametric empirical likelihood inference from capture–recapture data with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 786-808, September.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00921-1
    DOI: 10.1007/s11749-024-00921-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00921-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00921-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dankmar Böhning & Helen E. Ogden, 2021. "General flation models for count data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 245-261, February.
    2. Dankmar Böhning & Herwig Friedl, 2021. "Population size estimation based upon zero-truncated, one-inflated and sparse count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1197-1217, October.
    3. Firouzeh Noghrehchi & Jakub Stoklosa & Spiridon Penev, 2020. "Multiple imputation and functional methods in the presence of measurement error and missingness in explanatory variables," Computational Statistics, Springer, vol. 35(3), pages 1291-1317, September.
    4. Yang Liu & Yukun Liu & Pengfei Li & Jing Qin, 2018. "Full likelihood inference for abundance from continuous time capture–recapture data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 995-1014, November.
    5. Ryan T. Godwin & Dankmar Böhning, 2017. "Estimation of the population size by using the one-inflated positive Poisson model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 425-448, February.
    6. Shen‐Ming Lee & Wen‐Han Hwang & Jean de Dieu Tapsoba, 2016. "Estimation in closed capture–recapture models when covariates are missing at random," Biometrics, The International Biometric Society, vol. 72(4), pages 1294-1304, December.
    7. Yukun Liu & Pengfei Li & Jing Qin, 2017. "Maximum empirical likelihood estimation for abundance in a closed population from capture-recapture data," Biometrika, Biometrika Trust, vol. 104(3), pages 527-543.
    8. Yang Liu & Yukun Liu & Pengfei Li & Lin Zhu, 2021. "Maximum likelihood abundance estimation from capture‐recapture data when covariates are missing at random," Biometrics, The International Biometric Society, vol. 77(3), pages 1050-1060, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulu Ji & Yang Liu, 2024. "A Penalized Empirical Likelihood Approach for Estimating Population Sizes under the Negative Binomial Regression Model," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    2. Yang Liu & Yukun Liu & Pengfei Li & Lin Zhu, 2021. "Maximum likelihood abundance estimation from capture‐recapture data when covariates are missing at random," Biometrics, The International Biometric Society, vol. 77(3), pages 1050-1060, September.
    3. Mengke Li & Yukun Liu & Pengfei Li & Jing Qin, 2022. "Empirical likelihood meta-analysis with publication bias correction under Copas-like selection model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 93-112, February.
    4. Wen-Han Hwang & Jakub Stoklosa & Ching-Yun Wang, 2022. "Population Size Estimation Using Zero-Truncated Poisson Regression with Measurement Error," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 303-320, June.
    5. Dankmar Böhning & Rattana Lerdsuwansri & Patarawan Sangnawakij, 2023. "Modeling COVID‐19 contact‐tracing using the ratio regression capture–recapture approach," Biometrics, The International Biometric Society, vol. 79(4), pages 3818-3830, December.
    6. Ryan T. Godwin, 2024. "One-inflated zero-truncated count regression models," Papers 2402.02272, arXiv.org.
    7. Mark E. Piatek & Dankmar Böhning, 2024. "Deriving a zero-truncated modelling methodology to analyse capture–recapture data from self-reported social networks," METRON, Springer;Sapienza Università di Roma, vol. 82(2), pages 135-160, August.
    8. Shen-Ming Lee & Truong-Nhat Le & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods," Computational Statistics, Springer, vol. 38(2), pages 899-934, June.
    9. Buu-Chau Truong & Nguyen Van Thuan & Nguyen Huu Hau & Michael McAleer, 2019. "Applications of the Newton-Raphson Method in Decision Sciences and Education," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(4), pages 52-80, December.
    10. Liu, Yang & Zhang, Xiuzhen & Li, Mengke & Liu, Guanfu & Zhu, Lin, 2019. "Abundance estimation based on optimal estimating function with missing covariates in capture–recapture studies," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 15-20.
    11. Maciej Berk{e}sewicz & Katarzyna Pawlukiewicz, 2020. "Estimation of the number of irregular foreigners in Poland using non-linear count regression models," Papers 2008.09407, arXiv.org.
    12. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    13. Yang Liu & Yukun Liu & Yan Fan & Han Geng, 2018. "Likelihood ratio confidence interval for the abundance under binomial detectability models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 549-568, July.
    14. Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
    15. Dankmar Böhning & Herwig Friedl, 2021. "Population size estimation based upon zero-truncated, one-inflated and sparse count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1197-1217, October.
    16. Linda Altieri & Alessio Farcomeni & Danilo Alunni Fegatelli, 2023. "Continuous time‐interaction processes for population size estimation, with an application to drug dealing in Italy," Biometrics, The International Biometric Society, vol. 79(2), pages 1254-1267, June.
    17. Yang Liu & Rong Kuang & Guanfu Liu, 2024. "Penalized likelihood inference for the finite mixture of Poisson distributions from capture-recapture data," Statistical Papers, Springer, vol. 65(5), pages 2751-2773, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00921-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.