IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i1p1-7.html
   My bibliography  Save this article

Marginal Models for Clustered Time-to-Event Data with Competing Risks Using Pseudovalues

Author

Listed:
  • Brent R. Logan
  • Mei-Jie Zhang
  • John P. Klein

Abstract

No abstract is available for this item.

Suggested Citation

  • Brent R. Logan & Mei-Jie Zhang & John P. Klein, 2011. "Marginal Models for Clustered Time-to-Event Data with Competing Risks Using Pseudovalues," Biometrics, The International Biometric Society, vol. 67(1), pages 1-7, March.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:1:p:1-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2010.01416.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John P. Klein & Per Kragh Andersen, 2005. "Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function," Biometrics, The International Biometric Society, vol. 61(1), pages 223-229, March.
    2. Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwang Woo Ahn & Anjishnu Banerjee & Natasha Sahr & Soyoung Kim, 2018. "Group and within-group variable selection for competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 407-424, July.
    2. Michael J. Martens & Brent R. Logan, 2020. "Group sequential tests for treatment effect on survival and cumulative incidence at a fixed time point," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 603-623, July.
    3. Yanzhi Wang & Brent R. Logan, 2019. "Testing for center effects on survival and competing risks outcomes using pseudo-value regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 206-228, April.
    4. He, Yizeng & Kim, Soyoung & Kim, Mi-Ok & Saber, Wael & Ahn, Kwang Woo, 2021. "Optimal treatment regimes for competing risk data using doubly robust outcome weighted learning with bi-level variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    5. Zhixuan Fu & Shuangge Ma & Haiqun Lin & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized Variable Selection for Multi-center Competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 379-405, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    2. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    3. Brent R. Logan & John P. Klein & Mei‐Jie Zhang, 2008. "Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation," Biometrics, The International Biometric Society, vol. 64(3), pages 733-740, September.
    4. Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
    5. Klemen Pavlič & Torben Martinussen & Per Kragh Andersen, 2019. "Goodness of fit tests for estimating equations based on pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 189-205, April.
    6. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    7. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Sangbum Choi & Xuelin Huang, 2014. "Maximum likelihood estimation of semiparametric mixture component models for competing risks data," Biometrics, The International Biometric Society, vol. 70(3), pages 588-598, September.
    9. Frank Eriksson & Jianing Li & Thomas Scheike & Mei‐Jie Zhang, 2015. "The proportional odds cumulative incidence model for competing risks," Biometrics, The International Biometric Society, vol. 71(3), pages 687-695, September.
    10. M. A. Nicolaie & J. C. van Houwelingen & T. M. de Witte & H. Putter, 2013. "Dynamic Pseudo-Observations: A Robust Approach to Dynamic Prediction in Competing Risks," Biometrics, The International Biometric Society, vol. 69(4), pages 1043-1052, December.
    11. Yanzhi Wang & Brent R. Logan, 2019. "Testing for center effects on survival and competing risks outcomes using pseudo-value regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 206-228, April.
    12. Tunes-da-Silva, Gisela & Klein, John P., 2011. "Cutpoint selection for discretizing a continuous covariate for generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 226-235, January.
    13. Ewa Wycinka & Tomasz Jurkiewicz, 2019. "Survival Regression Models For Single Events And Competing Risks Based On Pseudoobservations," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 171-188, March.
    14. Erik T. Parner & Per K. Andersen, 2010. "Regression analysis of censored data using pseudo-observations," Stata Journal, StataCorp LP, vol. 10(3), pages 408-422, September.
    15. Wycinka Ewa, 2019. "Competing Risk Models of Default in the Presence of Early Repayments," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 99-120, June.
    16. Alina Schenk & Moritz Berger & Matthias Schmid, 2024. "Pseudo-value regression trees," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 439-471, April.
    17. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    18. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    19. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    20. Michael J. Martens & Brent R. Logan, 2018. "A group sequential test for treatment effect based on the Fine–Gray model," Biometrics, The International Biometric Society, vol. 74(3), pages 1006-1013, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:1:p:1-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.