IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p226-235.html
   My bibliography  Save this article

Cutpoint selection for discretizing a continuous covariate for generalized estimating equations

Author

Listed:
  • Tunes-da-Silva, Gisela
  • Klein, John P.

Abstract

We consider the problem of dichotomizing a continuous covariate when performing a regression analysis based on a generalized estimation approach. The problem involves estimation of the cutpoint for the covariate and testing the hypothesis that the binary covariate constructed from the continuous covariate has a significant impact on the outcome. Due to the multiple testing used to find the optimal cutpoint, we need to make an adjustment to the usual significance test to preserve the type-I error rates. We illustrate the techniques on one data set of patients given unrelated hematopoietic stem cell transplantation. Here the question is whether the CD34 cell dose given to patient affects the outcome of the transplant and what is the smallest cell dose which is needed for good outcomes.

Suggested Citation

  • Tunes-da-Silva, Gisela & Klein, John P., 2011. "Cutpoint selection for discretizing a continuous covariate for generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 226-235, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:226-235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00081-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lausen, Berthold & Schumacher, Martin, 1996. "Evaluating the effect of optimized cutoff values in the assessment of prognostic factors," Computational Statistics & Data Analysis, Elsevier, vol. 21(3), pages 307-326, March.
    2. Contal, Cecile & O'Quigley, John, 1999. "An application of changepoint methods in studying the effect of age on survival in breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 30(3), pages 253-270, May.
    3. John P. Klein & Per Kragh Andersen, 2005. "Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function," Biometrics, The International Biometric Society, vol. 61(1), pages 223-229, March.
    4. Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
    5. Brent R. Logan & John P. Klein & Mei‐Jie Zhang, 2008. "Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation," Biometrics, The International Biometric Society, vol. 64(3), pages 733-740, September.
    6. Adin-Cristian Andrei & Susan Murray, 2007. "Regression Models for the Mean of the Quality-of-Life-Adjusted Restricted Survival Time Using Pseudo-Observations," Biometrics, The International Biometric Society, vol. 63(2), pages 398-404, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Min Huang, 2019. "Binary surrogates with stratified samples when weights are unknown," Computational Statistics, Springer, vol. 34(2), pages 653-682, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
    2. Heinzl, Harald & Tempfer, Clemens, 2001. "A cautionary note on segmenting a cyclical covariate by minimum P-value search," Computational Statistics & Data Analysis, Elsevier, vol. 35(4), pages 451-461, February.
    3. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    4. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    5. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    6. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Sangbum Choi & Xuelin Huang, 2014. "Maximum likelihood estimation of semiparametric mixture component models for competing risks data," Biometrics, The International Biometric Society, vol. 70(3), pages 588-598, September.
    8. M. A. Nicolaie & J. C. van Houwelingen & T. M. de Witte & H. Putter, 2013. "Dynamic Pseudo-Observations: A Robust Approach to Dynamic Prediction in Competing Risks," Biometrics, The International Biometric Society, vol. 69(4), pages 1043-1052, December.
    9. Wycinka Ewa, 2019. "Competing Risk Models of Default in the Presence of Early Repayments," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 99-120, June.
    10. Alina Schenk & Moritz Berger & Matthias Schmid, 2024. "Pseudo-value regression trees," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 439-471, April.
    11. Brent R. Logan & John P. Klein & Mei‐Jie Zhang, 2008. "Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation," Biometrics, The International Biometric Society, vol. 64(3), pages 733-740, September.
    12. Klemen Pavlič & Torben Martinussen & Per Kragh Andersen, 2019. "Goodness of fit tests for estimating equations based on pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 189-205, April.
    13. Frank Eriksson & Jianing Li & Thomas Scheike & Mei‐Jie Zhang, 2015. "The proportional odds cumulative incidence model for competing risks," Biometrics, The International Biometric Society, vol. 71(3), pages 687-695, September.
    14. Yanzhi Wang & Brent R. Logan, 2019. "Testing for center effects on survival and competing risks outcomes using pseudo-value regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 206-228, April.
    15. Hollander, Norbert & Schumacher, Martin, 2006. "Estimating the functional form of a continuous covariate's effect on survival time," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1131-1151, February.
    16. Ewa Wycinka & Tomasz Jurkiewicz, 2019. "Survival Regression Models For Single Events And Competing Risks Based On Pseudoobservations," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 171-188, March.
    17. Erik T. Parner & Per K. Andersen, 2010. "Regression analysis of censored data using pseudo-observations," Stata Journal, StataCorp LP, vol. 10(3), pages 408-422, September.
    18. Yu-Min Huang, 2019. "Binary surrogates with stratified samples when weights are unknown," Computational Statistics, Springer, vol. 34(2), pages 653-682, June.
    19. Hothorn, Torsten & Lausen, Berthold, 2003. "On the exact distribution of maximally selected rank statistics," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 121-137, June.
    20. Brent R. Logan & Mei-Jie Zhang & John P. Klein, 2011. "Marginal Models for Clustered Time-to-Event Data with Competing Risks Using Pseudovalues," Biometrics, The International Biometric Society, vol. 67(1), pages 1-7, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:226-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.