IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v158y2021ics0167947321000013.html
   My bibliography  Save this article

Optimal treatment regimes for competing risk data using doubly robust outcome weighted learning with bi-level variable selection

Author

Listed:
  • He, Yizeng
  • Kim, Soyoung
  • Kim, Mi-Ok
  • Saber, Wael
  • Ahn, Kwang Woo

Abstract

The goal of the optimal treatment regime is maximizing treatment benefits via personalized treatment assignments based on the observed patient and treatment characteristics. Parametric regression-based outcome learning approaches require exploring complex interplay between the outcome and treatment assignments adjusting for the patient and treatment covariates, yet correctly specifying such relationships is challenging. Thus, a robust method against misspecified models is desirable in practice. Parsimonious models are also desired to pursue a concise interpretation and to avoid including spurious predictors of the outcome or treatment benefits. These issues have not been comprehensively addressed in the presence of competing risks. Recognizing that competing risks and group variables are frequently present, we propose a doubly robust estimation with adaptive L1 penalties to select important variables at both group and within-group levels for competing risks data. The proposed method is applied to hematopoietic cell transplantation data to personalize the graft source choice for treatment-related mortality (TRM). While the existing medical literature attempts to find a uniform solution ignoring the heterogeneity of the graft source effects on TRM, the analysis results show the effect of the graft source on TRM could be different depending on the patient-specific characteristics.

Suggested Citation

  • He, Yizeng & Kim, Soyoung & Kim, Mi-Ok & Saber, Wael & Ahn, Kwang Woo, 2021. "Optimal treatment regimes for competing risk data using doubly robust outcome weighted learning with bi-level variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000013
    DOI: 10.1016/j.csda.2021.107167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321000013
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Brent R. Logan & Mei-Jie Zhang & John P. Klein, 2011. "Marginal Models for Clustered Time-to-Event Data with Competing Risks Using Pseudovalues," Biometrics, The International Biometric Society, vol. 67(1), pages 1-7, March.
    3. Kwang Woo Ahn & Anjishnu Banerjee & Natasha Sahr & Soyoung Kim, 2018. "Group and within-group variable selection for competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 407-424, July.
    4. Y. Q. Zhao & D. Zeng & E. B. Laber & R. Song & M. Yuan & M. R. Kosorok, 2015. "Doubly robust learning for estimating individualized treatment with censored data," Biometrika, Biometrika Trust, vol. 102(1), pages 151-168.
    5. Idil Yavuz & Yu Chng & Abdus S. Wahed, 2018. "Estimating the cumulative incidence function of dynamic treatment regimes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(1), pages 85-106, January.
    6. Peng He & Frank Eriksson & Thomas H. Scheike & Mei-Jie Zhang, 2016. "A Proportional Hazards Regression Model for the Subdistribution with Covariates-adjusted Censoring Weight for Competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 103-122, March.
    7. Peisong Han & Lu Wang, 2013. "Estimation with missing data: beyond double robustness," Biometrika, Biometrika Trust, vol. 100(2), pages 417-430.
    8. Xiaofei Bai & Anastasios A. Tsiatis & Wenbin Lu & Rui Song, 2017. "Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 585-604, October.
    9. Rebecca Hager & Anastasios A. Tsiatis & Marie Davidian, 2018. "Optimal two‐stage dynamic treatment regimes from a classification perspective with censored survival data," Biometrics, The International Biometric Society, vol. 74(4), pages 1180-1192, December.
    10. Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
    11. Peisong Han, 2014. "Multiply Robust Estimation in Regression Analysis With Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1159-1173, September.
    12. Jian Huang & Shuange Ma & Huiliang Xie & Cun-Hui Zhang, 2009. "A group bridge approach for variable selection," Biometrika, Biometrika Trust, vol. 96(2), pages 339-355.
    13. Shi, Chengchun & Fan, Ailin & Song, Rui & Lu, Wenbin, 2018. "High-dimensional A-learning for optimal dynamic treatment regimes," LSE Research Online Documents on Economics 102113, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Niwen & Guo, Xu & Zhu, Lixing, 2024. "Significance test for semiparametric conditional average treatment effects and other structural functions," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwang Woo Ahn & Anjishnu Banerjee & Natasha Sahr & Soyoung Kim, 2018. "Group and within-group variable selection for competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 407-424, July.
    2. Xiong, Wei & Wang, Dehui & Deng, Dianliang & Wang, Xinyang & Zhang, Wanying, 2022. "Penalized multiply robust estimation in high-order autoregressive processes with missing explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
    4. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    5. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    6. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    7. Zhixuan Fu & Shuangge Ma & Haiqun Lin & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized Variable Selection for Multi-center Competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 379-405, December.
    8. Su, Miaomiao & Wang, Qihua, 2022. "A convex programming solution based debiased estimator for quantile with missing response and high-dimensional covariables," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    9. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    10. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    11. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
    12. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    13. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    14. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
    15. Chixiang Chen & Biyi Shen & Aiyi Liu & Rongling Wu & Ming Wang, 2021. "A multiple robust propensity score method for longitudinal analysis with intermittent missing data," Biometrics, The International Biometric Society, vol. 77(2), pages 519-532, June.
    16. Zhuoer Sun & Suojin Wang, 2019. "Semiparametric estimation in regression with missing covariates using single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1201-1232, October.
    17. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    18. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    19. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Erqian Li & Jianxin Pan & Manlai Tang & Keming Yu & Wolfgang Karl Härdle & Xiaowen Dai & Maozai Tian, 2023. "Weighted Competing Risks Quantile Regression Models and Variable Selection," Mathematics, MDPI, vol. 11(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.