IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v10y2010i3p408-422.html
   My bibliography  Save this article

Regression analysis of censored data using pseudo-observations

Author

Listed:
  • Erik T. Parner

    (University of Aarhus)

  • Per K. Andersen

    (University of Copenhagen)

Abstract

We draw upon a series of articles in which a method based on pseu- dovalues is proposed for direct regression modeling of the survival function, the restricted mean, and the cumulative incidence function in competing risks with right-censored data. The models, once the pseudovalues have been computed, can be fit using standard generalized estimating equation software. Here we present Stata procedures for computing these pseudo-observations. An example from a bone marrow transplantation study is used to illustrate the method.

Suggested Citation

  • Erik T. Parner & Per K. Andersen, 2010. "Regression analysis of censored data using pseudo-observations," Stata Journal, StataCorp LP, vol. 10(3), pages 408-422, September.
  • Handle: RePEc:tsj:stataj:v:10:y:2010:i:3:p:408-422
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj10-3/st0202/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0202
    File Function: link to article download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John P. Klein & Per Kragh Andersen, 2005. "Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function," Biometrics, The International Biometric Society, vol. 61(1), pages 223-229, March.
    2. Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
    3. Per K. Andersen & John P. Klein, 2007. "Regression Analysis for Multistate Models Based on a Pseudo‐value Approach, with Applications to Bone Marrow Transplantation Studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 3-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2023. "Regression models for censored time-to-event data using infinitesimal jack-knife pseudo-observations, with applications to left-truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 654-671, July.
    2. Govert E. Bijwaard & Mikko Myrskylä & Per Tynelius & Finn Rasmussen, 2017. "Educational gain in cause-specific mortality: accounting for confounders," MPIDR Working Papers WP-2017-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    3. Govert E. Bijwaard & Per Tynelius & Mikko Myrskylä, 2019. "Education, cognitive ability, and cause-specific mortality: A structural approach," Population Studies, Taylor & Francis Journals, vol. 73(2), pages 217-232, May.
    4. H. Joseph Newton & Nicholas J. Cox, 2013. "The Stata Journal Editors' Prize 2013: Erik Thorlund Parner and Per Kragh Andersen," Stata Journal, StataCorp LP, vol. 13(4), pages 669-671, December.
    5. Kamaryn T. Tanner & Linda D. Sharples & Rhian M. Daniel & Ruth H. Keogh, 2021. "Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology and empirical comparison," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 3-30, January.
    6. Szilárd Nemes & Erik Bülow & Andreas Gustavsson, 2020. "A Brief Overview of Restricted Mean Survival Time Estimators and Associated Variances," Stats, MDPI, vol. 3(2), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. A. Nicolaie & J. C. van Houwelingen & T. M. de Witte & H. Putter, 2013. "Dynamic Pseudo-Observations: A Robust Approach to Dynamic Prediction in Competing Risks," Biometrics, The International Biometric Society, vol. 69(4), pages 1043-1052, December.
    2. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    3. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    4. Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
    5. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    6. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Sangbum Choi & Xuelin Huang, 2014. "Maximum likelihood estimation of semiparametric mixture component models for competing risks data," Biometrics, The International Biometric Society, vol. 70(3), pages 588-598, September.
    8. Wycinka Ewa, 2019. "Competing Risk Models of Default in the Presence of Early Repayments," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 99-120, June.
    9. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    10. Brent R. Logan & John P. Klein & Mei‐Jie Zhang, 2008. "Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation," Biometrics, The International Biometric Society, vol. 64(3), pages 733-740, September.
    11. Klemen Pavlič & Torben Martinussen & Per Kragh Andersen, 2019. "Goodness of fit tests for estimating equations based on pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 189-205, April.
    12. Frank Eriksson & Jianing Li & Thomas Scheike & Mei‐Jie Zhang, 2015. "The proportional odds cumulative incidence model for competing risks," Biometrics, The International Biometric Society, vol. 71(3), pages 687-695, September.
    13. Yanzhi Wang & Brent R. Logan, 2019. "Testing for center effects on survival and competing risks outcomes using pseudo-value regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 206-228, April.
    14. Tunes-da-Silva, Gisela & Klein, John P., 2011. "Cutpoint selection for discretizing a continuous covariate for generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 226-235, January.
    15. Ewa Wycinka & Tomasz Jurkiewicz, 2019. "Survival Regression Models For Single Events And Competing Risks Based On Pseudoobservations," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 171-188, March.
    16. Brent R. Logan & Mei-Jie Zhang & John P. Klein, 2011. "Marginal Models for Clustered Time-to-Event Data with Competing Risks Using Pseudovalues," Biometrics, The International Biometric Society, vol. 67(1), pages 1-7, March.
    17. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    18. Michael J. Martens & Brent R. Logan, 2018. "A group sequential test for treatment effect based on the Fine–Gray model," Biometrics, The International Biometric Society, vol. 74(3), pages 1006-1013, September.
    19. Yosra Yousif & Faiz Elfaki & Meftah Hrairi & Oyelola Adegboye, 2022. "Bayesian Analysis of Masked Competing Risks Data Based on Proportional Subdistribution Hazards Model," Mathematics, MDPI, vol. 10(17), pages 1-10, August.
    20. Wycinka Ewa & Jurkiewicz Tomasz, 2019. "Survival Regression Models For Single Events And Competing Risks Based On Pseudo-Observations," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 171-188, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:10:y:2010:i:3:p:408-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.