IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v91y2004i1p35-52.html
   My bibliography  Save this article

Likelihood ratio tests for goodness-of-fit of a nonlinear regression model

Author

Listed:
  • Crainiceanu, Ciprian M.
  • Ruppert, David

Abstract

We propose likelihood and restricted likelihood ratio tests for goodness-of-fit of nonlinear regression. The first-order Taylor approximation around the MLE of the regression parameters is used to approximate the null hypothesis and the alternative is modeled nonparametrically using penalized splines. The exact finite sample distribution of the test statistics is obtained for the linear model approximation and can be easily simulated. We recommend using the restricted likelihood instead of the likelihood ratio test because restricted maximum-likelihood estimates are not as severely biased as the maximum-likelihood estimates in the penalized splines framework.

Suggested Citation

  • Crainiceanu, Ciprian M. & Ruppert, David, 2004. "Likelihood ratio tests for goodness-of-fit of a nonlinear regression model," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 35-52, October.
  • Handle: RePEc:eee:jmvana:v:91:y:2004:i:1:p:35-52
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00082-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan J. & Huang L-S., 2001. "Goodness-of-Fit Tests for Parametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 640-652, June.
    2. Diebolt, Jean & Zuber, Jacques, 1999. "Goodness-of-fit tests for nonlinear heteroscedastic regression models," Statistics & Probability Letters, Elsevier, vol. 42(1), pages 53-60, March.
    3. Ciprian M. Crainiceanu & David Ruppert, 2004. "Likelihood ratio tests in linear mixed models with one variance component," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 165-185, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuhua Liu & Xingzhong Xu, 2016. "Confidence distribution inferences in one-way random effects model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 59-74, March.
    2. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    3. Sonja Greven & Fabian Scheipl, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1568-1573, October.
    4. Giles Hooker, 2009. "Forcing Function Diagnostics for Nonlinear Dynamics," Biometrics, The International Biometric Society, vol. 65(3), pages 928-936, September.
    5. Garrett M. Fitzmaurice & Stuart R. Lipsitz & Joseph G. Ibrahim, 2007. "A Note on Permutation Tests for Variance Components in Multilevel Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(3), pages 942-946, September.
    6. Zaixing Li & Lixing Zhu, 2010. "On Variance Components in Semiparametric Mixed Models for Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 442-457, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakob Peterlin & Nataša Kejžar & Rok Blagus, 2023. "Correct specification of design matrices in linear mixed effects models: tests with graphical representation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 184-210, March.
    2. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    3. Mason David M. & Eubank Randy, 2012. "Moderate deviations and intermediate efficiency for lack-of-fit tests," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 175-187, June.
    4. Bodhisattva Sen & Mary Meyer, 2017. "Testing against a linear regression model using ideas from shape-restricted estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 423-448, March.
    5. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    6. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    7. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    8. Zhenzhen Zhang & Thomas M. Braun & Karen E. Peterson & Howard Hu & Martha M. Téllez-Rojo & Brisa N. Sánchez, 2018. "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 634-650, December.
    9. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    10. Masamune Iwasawa, 2015. "A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models," Econometrics, MDPI, vol. 3(3), pages 1-31, September.
    11. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    12. Wang-Li Xu & Li-Xing Zhu, 2008. "Goodness-of-fit testing for varying-coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 129-146, September.
    13. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    14. Philip T. Reiss & R. Todd Ogden, 2010. "Functional Generalized Linear Models with Images as Predictors," Biometrics, The International Biometric Society, vol. 66(1), pages 61-69, March.
    15. Pascal Lavergne & Valentin Patilea, 2011. "One for All and All for One: Regression Checks With Many Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 41-52, January.
    16. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    17. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    18. Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.
    19. Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    20. Junmin Liu & Deli Zhu & Luoyao Yu & Xuehu Zhu, 2023. "Specification testing of partially linear single-index models: a groupwise dimension reduction-based adaptive-to-model approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 232-262, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:91:y:2004:i:1:p:35-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.