IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v57y2001i1p43-52.html
   My bibliography  Save this article

Maximum Likelihood Methods for Cure Rate Models with Missing Covariates

Author

Listed:
  • Ming‐Hui Chen
  • Joseph G. Ibrahim

Abstract

Summary. We propose maximum likelihood methods for parameter estimation for a novel class of semi‐parametric survival models with a cure fraction, in which the covariates are allowed to be missing. We allow the covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one‐dimensional conditional distributions. We propose a novel EM algorithm for maximum likelihood estimation and derive standard errors by using Louis's formula (Louis, 1982, Journal of the Royal Statistical Society, Series B44, 226–233). Computational techniques using the Monte Carlo EM algorithm are discussed and implemented. A real data set involving a melanoma cancer clinical trial is examined in detail to demonstrate the methodology.

Suggested Citation

  • Ming‐Hui Chen & Joseph G. Ibrahim, 2001. "Maximum Likelihood Methods for Cure Rate Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 57(1), pages 43-52, March.
  • Handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:43-52
    DOI: 10.1111/j.0006-341X.2001.00043.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0006-341X.2001.00043.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0006-341X.2001.00043.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz, 1999. "Monte Carlo EM for Missing Covariates in Parametric Regression Models," Biometrics, The International Biometric Society, vol. 55(2), pages 591-596, June.
    2. Jane C. Lindsey & Louise M. Ryan, 1993. "A Three‐State Multiplicative Model for Rodent Tumorigenicity Experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(2), pages 283-300, June.
    3. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    4. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth R. Brown & Joseph G. Ibrahim, 2003. "Bayesian Approaches to Joint Cure-Rate and Longitudinal Models with Applications to Cancer Vaccine Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 686-693, September.
    2. Morbiducci, Marta & Nardi, Alessandra & Rossi, Carla, 2003. "Classification of "cured" individuals in survival analysis: the mixture approach to the diagnostic-prognostic problem," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 515-529, January.
    3. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    4. Qingxia Chen & Joseph G. Ibrahim, 2006. "Semiparametric Models for Missing Covariate and Response Data in Regression Models," Biometrics, The International Biometric Society, vol. 62(1), pages 177-184, March.
    5. S. Eftekhari Mahabadi & M. Ganjali, 2012. "An index of local sensitivity to non-ignorability for parametric survival models with potential non-random missing covariate: an application to the SEER cancer registry data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2327-2348, July.
    6. Chen, Ming-Hui & Ibrahim, Joseph G. & Shao, Qi-Man, 2009. "Maximum likelihood inference for the Cox regression model with applications to missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2018-2030, October.
    7. Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.
    8. Lee, Min Cherng & Mitra, Robin, 2016. "Multiply imputing missing values in data sets with mixed measurement scales using a sequence of generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 24-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerda Claeskens & Fabrizio Consentino, 2008. "Variable Selection with Incomplete Covariate Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1062-1069, December.
    2. Amy H. Herring & Joseph G. Ibrahim & Stuart R. Lipsitz, 2002. "Frailty Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 58(1), pages 98-109, March.
    3. Jiang, Wei & Josse, Julie & Lavielle, Marc, 2020. "Logistic regression with missing covariates—Parameter estimation, model selection and prediction within a joint-modeling framework," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    4. Samiran Sinha & Krishna K. Saha & Suojin Wang, 2014. "Semiparametric approach for non-monotone missing covariates in a parametric regression model," Biometrics, The International Biometric Society, vol. 70(2), pages 299-311, June.
    5. Chen, Xue-Dong & Fu, Ying-Zi, 2011. "Model selection for zero-inflated regression with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 765-773, January.
    6. Hongtu Zhu & Joseph G. Ibrahim & Xiaoyan Shi, 2009. "Diagnostic Measures for Generalized Linear Models with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 686-712, December.
    7. Jonathan L. French & Joseph G. Ibrahim, 2002. "Bayesian Methods for a Three–State Model for Rodent Carcinogenicity Studies," Biometrics, The International Biometric Society, vol. 58(4), pages 906-916, December.
    8. Ruiwen Zhou & Huiqiong Li & Jianguo Sun & Niansheng Tang, 2022. "A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 335-355, July.
    9. Lee, Min Cherng & Mitra, Robin, 2016. "Multiply imputing missing values in data sets with mixed measurement scales using a sequence of generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 24-38.
    10. Kalyan Das & Angshuman Sarkar, 2014. "Robust inference for generalized partially linear mixed models that account for censored responses and missing covariates -- an application to Arctic data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2418-2436, November.
    11. Chen, Qingxia & Ibrahim, Joseph G. & Chen, Ming-Hui & Senchaudhuri, Pralay, 2008. "Theory and inference for regression models with missing responses and covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1302-1331, July.
    12. Lan Huang & Ming-Hui Chen & Joseph G. Ibrahim, 2005. "Bayesian Analysis for Generalized Linear Models with Nonignorably Missing Covariates," Biometrics, The International Biometric Society, vol. 61(3), pages 767-780, September.
    13. Nanhua Zhang & Roderick J. Little, 2012. "A Pseudo-Bayesian Shrinkage Approach to Regression with Missing Covariates," Biometrics, The International Biometric Society, vol. 68(3), pages 933-942, September.
    14. Xiaoyan Shi & Hongtu Zhu & Joseph G. Ibrahim, 2009. "Local Influence for Generalized Linear Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1164-1174, December.
    15. Ib Thomsen & Li-Chun Zhang & Joseph Sexton, 2000. "Markov Chain Generated Profile Likelihood Inference under Generalized Proportional to Size Non-ignorable Non-response," Discussion Papers 274, Statistics Norway, Research Department.
    16. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    17. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    18. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    19. Samantha Leorato & Maura Mezzetti, 2015. "Spatial Panel Data Model with error dependence: a Bayesian Separable Covariance Approach," CEIS Research Paper 338, Tor Vergata University, CEIS, revised 09 Apr 2015.
    20. Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:43-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.