IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/274.html
   My bibliography  Save this paper

Markov Chain Generated Profile Likelihood Inference under Generalized Proportional to Size Non-ignorable Non-response

Author

Listed:

Abstract

We apply two non-ignorable non-response models to the data of the Norwegian Labour Force Survey, the Fertility Survey and the Alveolar Bone Loss Survey. Both models focus on the marginal effect which the object variable of interest has on the non-response, where we assume the probability of non-response to be generalized proportional to the size of the object variable. We draw the inference of the parameter of interest based on the first-order theory of the profile likelihood. We adapt the Markov chain sampling techniques to efficiently generate the profile likelihood inference. We explain and demonstrate why the resampling approach is more flexible for the likelihood inference than under the Beyesian framework.

Suggested Citation

  • Ib Thomsen & Li-Chun Zhang & Joseph Sexton, 2000. "Markov Chain Generated Profile Likelihood Inference under Generalized Proportional to Size Non-ignorable Non-response," Discussion Papers 274, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:274
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp274.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz, 1999. "Monte Carlo EM for Missing Covariates in Parametric Regression Models," Biometrics, The International Biometric Society, vol. 55(2), pages 591-596, June.
    3. Ib Thomsen & Ann Marit Kleive Holmøy, 1998. "Combining Data from Surveys and Administrative Record Systems. The Norwegian Experience," International Statistical Review, International Statistical Institute, vol. 66(2), pages 201-221, August.
    4. James Robins & Andrea Rotnitzky & Stijn Vansteelandt, 2007. "Discussions," Biometrics, The International Biometric Society, vol. 63(3), pages 650-653, September.
    5. P. W. F. Smith & C. J. Skinner & P. S. Clarke, 1999. "Allowing for non‐ignorable non‐response in the analysis of voting intention data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(4), pages 563-577.
    6. Steven E. Stern, 1997. "A Second‐order Adjustment to the Profile Likelihood in the Case of a Multidimensional Parameter of Interest," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 653-665.
    7. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerda Claeskens & Fabrizio Consentino, 2008. "Variable Selection with Incomplete Covariate Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1062-1069, December.
    2. Samiran Sinha & Krishna K. Saha & Suojin Wang, 2014. "Semiparametric approach for non-monotone missing covariates in a parametric regression model," Biometrics, The International Biometric Society, vol. 70(2), pages 299-311, June.
    3. Chen, Qingxia & Ibrahim, Joseph G. & Chen, Ming-Hui & Senchaudhuri, Pralay, 2008. "Theory and inference for regression models with missing responses and covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1302-1331, July.
    4. Lan Huang & Ming-Hui Chen & Joseph G. Ibrahim, 2005. "Bayesian Analysis for Generalized Linear Models with Nonignorably Missing Covariates," Biometrics, The International Biometric Society, vol. 61(3), pages 767-780, September.
    5. Nanhua Zhang & Roderick J. Little, 2012. "A Pseudo-Bayesian Shrinkage Approach to Regression with Missing Covariates," Biometrics, The International Biometric Society, vol. 68(3), pages 933-942, September.
    6. Ming‐Hui Chen & Joseph G. Ibrahim, 2001. "Maximum Likelihood Methods for Cure Rate Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 57(1), pages 43-52, March.
    7. Hongtu Zhu & Joseph G. Ibrahim & Xiaoyan Shi, 2009. "Diagnostic Measures for Generalized Linear Models with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 686-712, December.
    8. Xiaoyan Shi & Hongtu Zhu & Joseph G. Ibrahim, 2009. "Local Influence for Generalized Linear Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1164-1174, December.
    9. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    10. Bauwens, Luc & Bos, Charles S. & van Dijk, Herman K. & van Oest, Rutger D., 2004. "Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods," Journal of Econometrics, Elsevier, vol. 123(2), pages 201-225, December.
    11. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    12. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    13. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    14. Ricardo Reis & Vasco Curdia, 2009. "Correlated Disturbances and U.S. Business Cycles," 2009 Meeting Papers 129, Society for Economic Dynamics.
    15. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    16. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    17. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    18. Jenkins, Amanda & Velandia, Margarita & Lambert, Dayton M. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Martin, Steven W., 2011. "Factors Influencing the Selection of Precision Farming Information Sources by Cotton Producers," Agricultural and Resource Economics Review, Cambridge University Press, vol. 40(2), pages 307-320, September.
    19. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    20. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.