Model selection for zero-inflated regression with missing covariates
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz, 1999. "Monte Carlo EM for Missing Covariates in Parametric Regression Models," Biometrics, The International Biometric Society, vol. 55(2), pages 591-596, June.
- Lan Huang & Ming-Hui Chen & Joseph G. Ibrahim, 2005. "Bayesian Analysis for Generalized Linear Models with Nonignorably Missing Covariates," Biometrics, The International Biometric Society, vol. 61(3), pages 767-780, September.
- W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
- Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz & Amy H. Herring, 2005. "Missing-Data Methods for Generalized Linear Models: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 332-346, March.
- Sik-Yum Lee & Xin-Yuan Song, 2004. "Maximum Likelihood Analysis of a General Latent Variable Model with Hierarchically Mixed Data," Biometrics, The International Biometric Society, vol. 60(3), pages 624-636, September.
- Angers, Jean-Francois & Biswas, Atanu, 2003. "A Bayesian analysis of zero-inflated generalized Poisson model," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 37-46, February.
- Qingxia Chen & Joseph G. Ibrahim, 2006. "Semiparametric Models for Missing Covariate and Response Data in Regression Models," Biometrics, The International Biometric Society, vol. 62(1), pages 177-184, March.
- Gerda Claeskens & Fabrizio Consentino, 2008. "Variable Selection with Incomplete Covariate Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1062-1069, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lukusa, Martin T. & Phoa, Frederick Kin Hing, 2020. "A note on the weighting-type estimations of the zero-inflated Poisson regression model with missing data in covariates," Statistics & Probability Letters, Elsevier, vol. 158(C).
- Antonio J. Sáez-Castillo & Antonio Conde-Sánchez, 2017. "Detecting over- and under-dispersion in zero inflated data with the hyper-Poisson regression model," Statistical Papers, Springer, vol. 58(1), pages 19-33, March.
- Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
- Yang, Miao & Das, Kalyan & Majumdar, Anandamayee, 2016. "Analysis of bivariate zero inflated count data with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 73-82.
- Augustin, Nicole H. & Sauleau, Erik-André & Wood, Simon N., 2012. "On quantile quantile plots for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2404-2409.
- T. Martin Lukusa & Shen-Ming Lee & Chin-Shang Li, 2016. "Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(4), pages 457-483, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Wei & Josse, Julie & Lavielle, Marc, 2020. "Logistic regression with missing covariates—Parameter estimation, model selection and prediction within a joint-modeling framework," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
- Chen, Qingxia & Ibrahim, Joseph G. & Chen, Ming-Hui & Senchaudhuri, Pralay, 2008. "Theory and inference for regression models with missing responses and covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1302-1331, July.
- Nanhua Zhang & Roderick J. Little, 2012. "A Pseudo-Bayesian Shrinkage Approach to Regression with Missing Covariates," Biometrics, The International Biometric Society, vol. 68(3), pages 933-942, September.
- Joseph Ibrahim & Geert Molenberghs, 2009. "Missing data methods in longitudinal studies: a review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 1-43, May.
- Lee, Min Cherng & Mitra, Robin, 2016. "Multiply imputing missing values in data sets with mixed measurement scales using a sequence of generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 24-38.
- Fang, Fang & Shao, Jun, 2016. "Iterated imputation estimation for generalized linear models with missing response and covariate values," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 111-123.
- Ming‐Hui Chen & Joseph G. Ibrahim, 2001. "Maximum Likelihood Methods for Cure Rate Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 57(1), pages 43-52, March.
- Yang Zhao, 2021. "Semiparametric model for regression analysis with nonmonotone missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 461-475, June.
- Lyubov Doroshenko & Brunero Liseo, 2023. "Generalized linear mixed model with bayesian rank likelihood," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 425-446, June.
- Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
- Lei Jin & Suojin Wang, 2010. "A Model Validation Procedure when Covariate Data are Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 403-421, September.
- Hongtu Zhu & Joseph G. Ibrahim & Xiaoyan Shi, 2009. "Diagnostic Measures for Generalized Linear Models with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 686-712, December.
- Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
- Susanne Gschlößl & Claudia Czado, 2008. "Modelling count data with overdispersion and spatial effects," Statistical Papers, Springer, vol. 49(3), pages 531-552, July.
- Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
- Yip, Karen C.H. & Yau, Kelvin K.W., 2005. "On modeling claim frequency data in general insurance with extra zeros," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 153-163, April.
- Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
- Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
- Anis Fradi & Chafik Samir & Ines Adouani, 2024. "A New Bayesian Approach to Global Optimization on Parametrized Surfaces in $$\mathbb {R}^{3}$$ R 3," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1077-1100, September.
- Antonello Loddo & Shawn Ni & Dongchu Sun, 2011.
"Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
- Loddo, Antonello & Ni, Shawn & Sun, Dongchu, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 342-355.
- Shawn Ni & Antonello Loddo & Dongchu Sun, 2009. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Working Papers 0911, Department of Economics, University of Missouri.
More about this item
Keywords
Zero-inflation Missing data Model selection AIC EM algorithm;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:765-773. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.