IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i12p3311-3319.html
   My bibliography  Save this article

A unified view on lifetime distributions arising from selection mechanisms

Author

Listed:
  • Rodrigues, Josemar
  • Balakrishnan, N.
  • Cordeiro, Gauss M.
  • de Castro, Mário

Abstract

In this paper, we formulate a flexible density function from the selection mechanism viewpoint (see, for example, Bayarri and DeGroot (1992) and Arellano-Valle et al. (2006)) which possesses nice biological and physical interpretations. The new density function contains as special cases many models that have been proposed recently in the literature. In constructing this model, we assume that the number of competing causes of the event of interest has a general discrete distribution characterized by its probability generating function. This function has an important role in the selection procedure as well as in computing the conditional personal cure rate. Finally, we illustrate how various models can be deduced as special cases of the proposed model.

Suggested Citation

  • Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3311-3319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002210
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    2. Pillai, R. N. & Jayakumar, K., 1995. "Discrete Mittag-Leffler distributions," Statistics & Probability Letters, Elsevier, vol. 23(3), pages 271-274, May.
    3. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    4. Chahkandi, M. & Ganjali, M., 2009. "On some lifetime distributions with decreasing failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4433-4440, October.
    5. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    6. Ming‐Hui Chen & Joseph G. Ibrahim, 2001. "Maximum Likelihood Methods for Cure Rate Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 57(1), pages 43-52, March.
    7. Barreto-Souza, Wagner & Cribari-Neto, Francisco, 2009. "A generalization of the exponential-Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2493-2500, December.
    8. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    9. Cooner, Freda & Banerjee, Sudipto & Carlin, Bradley P. & Sinha, Debajyoti, 2007. "Flexible Cure Rate Modeling Under Latent Activation Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 560-572, June.
    10. Devroye, Luc, 1993. "A triptych of discrete distributions related to the stable law," Statistics & Probability Letters, Elsevier, vol. 18(5), pages 349-351, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raj Kamal Maurya & Yogesh Mani Tripathi & Chandrakant Lodhi & Manoj Kumar Rastogi, 2019. "On a generalized Lomax distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1091-1104, October.
    2. Saralees Nadarajah & Gauss Cordeiro & Edwin Ortega, 2013. "The exponentiated Weibull distribution: a survey," Statistical Papers, Springer, vol. 54(3), pages 839-877, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    2. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    3. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    4. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    5. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    6. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    7. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    8. Tomasz J. Kozubowski & Krzysztof Podgórski, 2018. "A generalized Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 855-887, August.
    9. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    10. Jimut Bahan Chakrabarty & Shovan Chowdhury, 2016. "Compounded Inverse Weibull Distributions: Properties, Inference and Applications," Working papers 213, Indian Institute of Management Kozhikode.
    11. Mojtaba Alizadeh & Seyyed Fazel Bagheri & Mohammad Alizadeh & Saralees Nadarajah, 2017. "A new four-parameter lifetime distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 767-797, April.
    12. Ibrahim Elbatal & Emrah Altun & Ahmed Z. Afify & Gamze Ozel, 2019. "The Generalized Burr XII Power Series Distributions with Properties and Applications," Annals of Data Science, Springer, vol. 6(3), pages 571-597, September.
    13. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    14. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.
    15. Thierry E. Huillet, 2022. "Chance Mechanisms Involving Sibuya Distribution and its Relatives," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 722-764, November.
    16. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    17. Buddana Amrutha & Kozubowski Tomasz J., 2014. "Discrete Pareto Distributions," Stochastics and Quality Control, De Gruyter, vol. 29(2), pages 143-156, December.
    18. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.
    19. Nadjib Bouzar, 2008. "The semi-Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 459-464, June.
    20. Shovan Chowdhury, 2014. "Compounded Generalized Weibull Distributions - A Unified Approach," Working papers 148, Indian Institute of Management Kozhikode.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3311-3319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.