IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v41y2010i1p67-79.html
   My bibliography  Save this article

The impact of integrated aquaculture–agriculture on small‐scale farms in Southern Malawi

Author

Listed:
  • Madan M. Dey
  • Ferdinand J. Paraguas
  • Patrick Kambewa
  • Diemuth E. Pemsl

Abstract

Sustainable agricultural intensification is an urgent challenge for Sub‐Saharan Africa. One potential solution is to rely on local farmers' knowledge for improved management of diverse on‐farm resources and integration among various farm enterprises. In this article, we analyze the farm‐level impact of one recent example, namely the integrated aquaculture–agriculture (IAA) technologies that have been developed and disseminated in a participatory manner in Malawi. Based on a 2004 survey of 315 respondents (166 adopters and 149 nonadopters), we test the hypothesis that adoption of IAA is associated with improved farm productivity and more efficient use of resources. Estimating a technical inefficiency function shows that IAA farms were significantly more efficient compared to nonadopters. IAA farms also had higher total factor productivity, higher farm income per hectare, and higher returns to family labor.

Suggested Citation

  • Madan M. Dey & Ferdinand J. Paraguas & Patrick Kambewa & Diemuth E. Pemsl, 2010. "The impact of integrated aquaculture–agriculture on small‐scale farms in Southern Malawi," Agricultural Economics, International Association of Agricultural Economists, vol. 41(1), pages 67-79, January.
  • Handle: RePEc:bla:agecon:v:41:y:2010:i:1:p:67-79
    DOI: 10.1111/j.1574-0862.2009.00426.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1574-0862.2009.00426.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1574-0862.2009.00426.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Awudu Abdulai & Wallace E. Huffman, 2005. "The Diffusion of New Agricultural Technologies: The Case of Crossbred-Cow Technology in Tanzania," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 645-659.
    2. Thirtle, Colin & Lin, Lin & Piesse, Jenifer, 2003. "The Impact of Research-Led Agricultural Productivity Growth on Poverty Reduction in Africa, Asia and Latin America," World Development, Elsevier, vol. 31(12), pages 1959-1975, December.
    3. Pant, Jharendu & Demaine, Harvey & Edwards, Peter, 2005. "Bio-resource flow in integrated agriculture-aquaculture systems in a tropical monsoonal climate: a case study in Northeast Thailand," Agricultural Systems, Elsevier, vol. 83(2), pages 203-219, February.
    4. Foster, Andrew D & Rosenzweig, Mark R, 1995. "Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture," Journal of Political Economy, University of Chicago Press, vol. 103(6), pages 1176-1209, December.
    5. Hans P. Binswanger, 1980. "Attitudes Toward Risk: Experimental Measurement in Rural India," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(3), pages 395-407.
    6. Masters, William A. & Bedingar, Touba & Oehmke, James F., 1998. "The impact of agricultural research in Africa: aggregate and case study evidence," Agricultural Economics, Blackwell, vol. 19(1-2), pages 81-86, September.
    7. Alston, Julian M. & Wyatt, T. J. & Pardey, Philip G. & Marra, Michele C. & Chan-Kang, Connie, 2000. "A meta-analysis of rates of return to agricultural R & D: ex pede Herculem?," Research reports 113, International Food Policy Research Institute (IFPRI).
    8. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    9. Rauniyar, Ganesh P & Goode, Frank M, 1996. "Managing Green Revolution Technology: An Analysis of a Differential Practice Combination in Swaziland," Economic Development and Cultural Change, University of Chicago Press, vol. 44(2), pages 413-437, January.
    10. Hansen, J.D. & Luckert, M.K. & Minae, S. & Place, F., 2005. "Tree planting under customary tenure systems in malawi: impacts of marriage and inheritance patterns," Agricultural Systems, Elsevier, vol. 84(1), pages 99-118, April.
    11. Zvi Griliches, 1958. "Research Costs and Social Returns: Hybrid Corn and Related Innovations," Journal of Political Economy, University of Chicago Press, vol. 66(5), pages 419-419.
    12. Jules Pretty, 1999. "Can Sustainable Agriculture Feed Africa? New Evidence on Progress, Processes and Impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 1(3), pages 253-274, September.
    13. Raitzer, David A. & Kelley, Timothy G., 2008. "Benefit-cost meta-analysis of investment in the International Agricultural Research Centers of the CGIAR," Agricultural Systems, Elsevier, vol. 96(1-3), pages 108-123, March.
    14. Prein, M., 2002. "Integration of aquaculture into crop-animal systems in Asia," Agricultural Systems, Elsevier, vol. 71(1-2), pages 127-146.
    15. Mitch Renkow, 1994. "Technology, production environment, and household income: Assessing the regional impacts of technological change," Agricultural Economics, International Association of Agricultural Economists, vol. 10(3), pages 219-231, May.
    16. Jonathan Kydd & Andrew Dorward & Jamie Morrison & Georg Cadisch, 2004. "Agricultural development and pro-poor economic growth in sub-Saharan Africa: potential and policy," Oxford Development Studies, Taylor & Francis Journals, vol. 32(1), pages 37-57.
    17. Mukhopadhyay, Sudhin K, 1994. "Adapting Household Behavior to Agricultural Technology in West Bengal, India: Wage Labor, Fertility, and Child Schooling Determinants," Economic Development and Cultural Change, University of Chicago Press, vol. 43(1), pages 91-115, October.
    18. Brummett, Randall E. & Noble, R., 1995. "Aquaculture for African smallholders," Technical Reports 44729, Worldfish Center.
    19. David G. Abler & Vasant A. Sukhatme, 2006. "The “Efficient but Poor” Hypothesis ," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 338-343.
    20. Cragg, John G, 1971. "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods," Econometrica, Econometric Society, vol. 39(5), pages 829-844, September.
    21. Shujie Yao & Zinan Liu, 1998. "Determinants of Grain Production and Technical Efficiency in China," Journal of Agricultural Economics, Wiley Blackwell, vol. 49(2), pages 171-184, June.
    22. Byerlee, Derek & Heisey, Paul W., 1996. "Past and potential impacts of maize research in sub-Saharan Africa: a critical assessment," Food Policy, Elsevier, vol. 21(3), pages 255-277, July.
    23. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    24. Bindlish, Vishva & Evenson, Robert E, 1997. "The Impact of T&V Extension in Africa: The Experience of Kenya and Burkina Faso," The World Bank Research Observer, World Bank, vol. 12(2), pages 183-201, August.
    25. George E. Battese & Sohail J. Malik & Manzoor A. Gill, 1996. "An Investigation Of Technical Inefficiencies Of Production Of Wheat Farmers In Four Districts Of Pakistan," Journal of Agricultural Economics, Wiley Blackwell, vol. 47(1‐4), pages 37-49, January.
    26. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    27. Paul Wilson & Dave Hadley & Stephen Ramsden & Ioannis Kaltsas, 1998. "Measuring and Explaining Technical Efficiency in UK Potato Production," Journal of Agricultural Economics, Wiley Blackwell, vol. 49(3), pages 294-305, September.
    28. George Battese & Sumiter Broca, 1997. "Functional Forms of Stochastic Frontier Production Functions and Models for Technical Inefficiency Effects: A Comparative Study for Wheat Farmers in Pakistan," Journal of Productivity Analysis, Springer, vol. 8(4), pages 395-414, November.
    29. Wilson, Paul & Hadley, David & Asby, Carol, 2001. "The influence of management characteristics on the technical efficiency of wheat farmers in eastern England," Agricultural Economics, Blackwell, vol. 24(3), pages 329-338, March.
    30. Norton, George W. & Davis, Jeffrey S., 1979. "Review Of Methods Used To Evaluate Returns To Agricultural Research," Staff Papers 13520, University of Minnesota, Department of Applied Economics.
    31. Brummett, R.E. & Noble, R., 1995. "Aquaculture for African smallholders," Monographs, The WorldFish Center, number 9978, April.
    32. George W. Norton & Jeffrey S. Davis, 1981. "Evaluating Returns to Agricultural Research: A Review," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(4), pages 685-699.
    33. Lisa A. Cameron, 1999. "The Importance of Learning in the Adoption of High-Yielding Variety Seeds," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 83-94.
    34. Rukuni, Mandivamba & Blackie, Malcolm J. & Eicher, Carl K., 1998. "Crafting smallholder-driven agricultural research systems in Southern Africa," World Development, Elsevier, vol. 26(6), pages 1073-1087, June.
    35. Amemiya, Takeshi, 1974. "Multivariate Regression and Simultaneous Equation Models when the Dependent Variables Are Truncated Normal," Econometrica, Econometric Society, vol. 42(6), pages 999-1012, November.
    36. Asfaw, Abay & Admassie, Assefa, 2004. "The role of education on the adoption of chemical fertiliser under different socioeconomic environments in Ethiopia," Agricultural Economics, Blackwell, vol. 30(3), pages 215-228, May.
    37. Johannes Sauer & Klaus Frohberg & Henrich Hockmann, 2006. "Stochastic efficiency measurement: The curse of theoretical consistency," Journal of Applied Economics, Universidad del CEMA, vol. 9, pages 139-166, May.
    38. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    39. Bauer, Paul W., 1990. "Recent developments in the econometric estimation of frontiers," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 39-56.
    40. Adesina, Akinwumi A. & Baidu-Forson, Jojo, 1995. "Farmers' perceptions and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guinea, West Africa," Agricultural Economics, Blackwell, vol. 13(1), pages 1-9, October.
    41. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    42. Michael Lipton & Saurabh Sinha & Rachel Blackman, 2002. "Reconnecting Agricultural Technology to Human Development," Journal of Human Development and Capabilities, Taylor & Francis Journals, vol. 3(1), pages 123-152.
    43. George E. Battese, 1997. "A Note On The Estimation Of Cobb‐Douglas Production Functions When Some Explanatory Variables Have Zero Values," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 250-252, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phu Nguyen-Van & Cyrielle Poiraud & Nguyen To-The, 2017. "Modeling farmers’ decisions on tea varieties in Vietnam: a multinomial logit analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 48(3), pages 291-299, May.
    2. Islam, A.H.M.S., 2018. "Impact of Integrated Aquaculture-agriculture Value Chain Participation on Welfare of Marginalized Indigenous Households in Bangladesh: A Panel Data Analysis," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277412, International Association of Agricultural Economists.
    3. Islam, Abu Hayat, 2015. "Can Integrated Rice-Fish System Increase Welfare of the Marginalized Extreme Poor in Bangladesh? A DID Matching Approach," 2015 Conference, August 9-14, 2015, Milan, Italy 211792, International Association of Agricultural Economists.
    4. Gal Hochman & Eithan Hochman & Nadav Naveh & David Zilberman, 2018. "The Synergy between Aquaculture and Hydroponics Technologies: The Case of Lettuce and Tilapia," Sustainability, MDPI, vol. 10(10), pages 1-19, September.
    5. De los Santos-Montero, Luis A. & Bravo-Ureta, Boris E., 2017. "Natural Resource Management and Household Well-being: The Case of POSAF-II in Nicaragua," World Development, Elsevier, vol. 99(C), pages 42-59.
    6. Hongyun Zheng & Wanglin Ma & Gucheng Li, 2021. "Adoption of organic soil amendments and its impact on farm performance: evidence from wheat farmers in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 367-390, April.
    7. Béné, Christophe & Arthur, Robert & Norbury, Hannah & Allison, Edward H. & Beveridge, Malcolm & Bush, Simon & Campling, Liam & Leschen, Will & Little, David & Squires, Dale & Thilsted, Shakuntala H. &, 2016. "Contribution of Fisheries and Aquaculture to Food Security and Poverty Reduction: Assessing the Current Evidence," World Development, Elsevier, vol. 79(C), pages 177-196.
    8. Aslihan Arslan & Kristin Floress & Christine Lamanna & Leslie Lipper & Solomon Asfaw & Todd Rosenstock, 2020. "IFAD RESEARCH SERIES 63 - The adoption of improved agricultural technologies - A meta-analysis for Africa," IFAD Research Series 304758, International Fund for Agricultural Development (IFAD).
    9. Phu Nguyen-Van & Nguyen To-The, 2016. "Technical efficiency and agricultural policy: evidence from the teaproduction in Vietnam," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 97(3), pages 173-184.
    10. Yifan, Li & Tiaoyan, Wu & Shaodong, Wang & Xucan, Ku & Zhaoman, Zhong & Hongyan, Liu & Jiaolong, Li, 2023. "Developing integrated rice-animal farming based on climate and farmers choices," Agricultural Systems, Elsevier, vol. 204(C).
    11. Moses Majid Limuwa & Wales Singini & Trond Storebakken, 2018. "Is Fish Farming an Illusion for Lake Malawi Riparian Communities under Environmental Changes?," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    12. Olli-Pekka Kuusela & Maria S. Bowman & Gregory S. Amacher & Richard B. Howarth & Nadine T. Laporte, 2020. "Does infrastructure and resource access matter for technical efficiency? An empirical analysis of fishing and fuelwood collection in Mozambique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1811-1837, March.
    13. Tran, N. & Crissman, C. & Chijere, A. & Hong, M.C. & Teoh, S.J. & Valdivia, R.O., 2013. "Ex-ante assessment of integrated aquaculture-agriculture adoption and impact in Southern Malawi," Monographs, The WorldFish Center, number 40078, April.
    14. Fonda Jane Awuor & Ibrahim Ndegwa Macharia & Richard Mbithi Mulwa & Maurice Juma Ogada, 2024. "Adoption and impact of integrated agriculture aquaculture on income and productivity of smallholder fish farmers in Kenya," SN Business & Economics, Springer, vol. 4(1), pages 1-25, January.
    15. Randall Brummett, 2011. "Growing Fish to Make Money in Africa," World Bank Publications - Reports 10427, The World Bank Group.
    16. Lampach, Nicolas & To-The, Nguyen & Nguyen-Anh, Tuan, 2021. "Technical efficiency and the adoption of multiple agricultural technologies in the mountainous areas of Northern Vietnam," Land Use Policy, Elsevier, vol. 103(C).
    17. Zheng, Hongyun & Ma, Wanglin & Li, Gucheng, 2020. "Adoption of organic soil amendments and its impact on farm performance: evidence from wheat farmers in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(02), January.
    18. Murshed-E-Jahan, K. & Crissman, C. & Antle, J., 2013. "Economic and social impacts of Integrated Aquaculture-Agriculture technologies in Bangladesh," Monographs, The WorldFish Center, number 40077, April.
    19. Wang, Quanli & Rossignoli, Cristiano M. & Dompreh, Eric Brako & Su, Jie & Griffiths, Don & Htoo, Khaing Kyaw & Nway, Hsu Myat & Akester, Michael & Gasparatos, Alexandros, 2024. "Diversification strategies have a stabilizing effect for income and food availability during livelihood shocks: Evidence from small-scale aquaculture-agriculture systems in Myanmar during the COVID-19," Agricultural Systems, Elsevier, vol. 217(C).
    20. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    21. Jessica Blythe, 2013. "Social-ecological analysis of integrated agriculture-aquaculture systems in Dedza, Malawi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(4), pages 1143-1155, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    2. Puig-Junoy, Jaume & Argiles, Josep M., 2004. "The influence of management accounting use on farm inefficiency," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 5(2), pages 1-20, August.
    3. Jaume Puig & Josep M. Argilés, 2000. "Measuring and explaining farm inefficiency in a panel data set of mixed farms," Economics Working Papers 503, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Basanta R. Dhungana & Peter L. Nuthall & Gilbert V. Nartea, 2004. "Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 347-369, June.
    5. Lim, Krisha & Wichmann, Bruno & Luckert, Martin, 2021. "Adaptation, spatial effects, and targeting: Evidence from Africa and Asia," World Development, Elsevier, vol. 139(C).
    6. Dhungana, Basanta R. & Nuthall, Peter L. & Nartea, Gilbert V., 2000. "Explaining Economic Inefficiency Of Nepalese Rice Farms: An Empirical Investigation," 2000 Conference (44th), January 23-25, 2000, Sydney, Australia 123630, Australian Agricultural and Resource Economics Society.
    7. Rouf, Abdur, 2015. "Conventional vs Natural Flood Control and Drainage Managements in a Tidal Coastal Zone: An Evaluation from a Productive Efficiency Perspective," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 256023, Agricultural Economics Society.
    8. Lybbert, Travis J., 2006. "Indian farmers' valuation of yield distributions: Will poor farmers value `pro-poor' seeds?," Food Policy, Elsevier, vol. 31(5), pages 415-441, October.
    9. Edward Ebo ONUMAH & Bernhard BRÜMMER & Gabriele HÖRSTGEN-SCHWARK, 2010. "Productivity of the hired and family labour and determinants of technical inefficiency in Ghana's fish farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 56(2), pages 79-88.
    10. Abdul Wadud, 2013. "Impact of Microcredit on Agricultural Farm Performance and Food Security in Bangladesh," Working Papers 14, Institute of Microfinance (InM).
    11. Hong, Yu & Heerink, Nico & Zhao, Minjuan & van der Werf, Wopke, 2019. "Intercropping contributes to a higher technical efficiency in smallholder farming: Evidence from a case study in Gaotai County, China," Agricultural Systems, Elsevier, vol. 173(C), pages 317-324.
    12. Wilson, Paul & Hadley, David & Asby, Carol, 2001. "The influence of management characteristics on the technical efficiency of wheat farmers in eastern England," Agricultural Economics, Blackwell, vol. 24(3), pages 329-338, March.
    13. Bozoglu, Mehmet & Ceyhan, Vedat, 2007. "Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey," Agricultural Systems, Elsevier, vol. 94(3), pages 649-656, June.
    14. Thiam, Abdourahmane & Bravo-Ureta, Boris E. & Rivas, Teodoro E., 2001. "Technical efficiency in developing country agriculture: a meta-analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 235-243, September.
    15. Onumah, Edward E. & Acquah, H. de-Graft, 2011. "A Stochastic Production Investigation of Fish Farms in Ghana," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 3(2), pages 1-10, June.
    16. Imori, Denise & Guilhoto, Joaquim José Martins & Postali, Fernando Antonio Slaibe, 2012. "Eficiência técnica das agropecuárias familiar e patronal – diferenças regionais no Brasil [Technical efficiency of agricultural households and business - regional differences in Brazil]," MPRA Paper 46954, University Library of Munich, Germany.
    17. Imori, Denise & Guilhoto, Joaquim José Martins & Postali, Fernando Antonio Slaibe, 2012. "Production efficiency of family farms and business farms in the Brazilian regions," MPRA Paper 46995, University Library of Munich, Germany.
    18. Garbero, A. & Marion, P., 2018. "IFAD RESEARCH SERIES 28 - Understanding the dynamics of adoption decisions and their poverty impacts: the case of improved maize seeds in Uganda," IFAD Research Series 280077, International Fund for Agricultural Development (IFAD).
    19. Mywish K. Maredia & David Anthony Raitzer, 2010. "Estimating overall returns to international agricultural research in Africa through benefit‐cost analysis: a “best‐evidence” approach," Agricultural Economics, International Association of Agricultural Economists, vol. 41(1), pages 81-100, January.
    20. Maredia, Mywish K., 2009. "Improving the proof: Evolution of and emerging trends in impact assessment methods and approaches in agricultural development," IFPRI discussion papers 929, International Food Policy Research Institute (IFPRI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:41:y:2010:i:1:p:67-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.