Nowcasting Russia’s key macroeconomic variables using machine learning
Author
Abstract
Suggested Citation
DOI: 10.32609/0042-8736-2022-8-133-157
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anastasia Mogilat & Oleg Kryzhanovskiy & Zhanna Shuvalova & Yaroslav Murashov, 2024. "DYFARUS: Dynamic Factor Model to Forecast GDP by Output Using Input-Output Tables," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 3-25, June.
- Stankevich, Ivan, 2023. "Application of Markov-Switching MIDAS models to nowcasting of GDP and its components," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 122-143.
- Anastasiia Pankratova, 2024. "Forecasting Key Macroeconomic Indicators Using DMA and DMS Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 32-52, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nos:voprec:y:2022:id:4093. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: NEICON (email available below). General contact details of provider: https://www.vopreco.ru .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.