IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v82y2023i3p62-86.html
   My bibliography  Save this article

Forecasting Russian GDP, Inflation, Interest Rate, and Exchange Rate Using DSGE-VAR Model

Author

Listed:
  • Artur Sharafutdinov

    (Bank of Russia; RANEPA)

Abstract

This paper compares, on Russian quarterly data for 2003–2021, the forecast performance of a small-scale dynamic stochastic general equilibrium model (DSGE model) and the DSGE-VAR model as a Bayesian vector autoregression (VAR) which uses priors from this DSGE model. The forecast performance of the DSGE-VAR model turns out to be higher than that of the DSGE model for output growth and inflation over the one-year horizon and for the interest rate and exchange rate over a two-year horizon. Meanwhile, the DSGE-VAR model, on average, predicts GDP, inflation, and the exchange rate better and the interest rate worse than the first-order autoregressive model that serves as a benchmark.

Suggested Citation

  • Artur Sharafutdinov, 2023. "Forecasting Russian GDP, Inflation, Interest Rate, and Exchange Rate Using DSGE-VAR Model," Russian Journal of Money and Finance, Bank of Russia, vol. 82(3), pages 62-86, September.
  • Handle: RePEc:bkr:journl:v:82:y:2023:i:3:p:62-86
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/iblock/aa2/Forecasting-Russian-GDP-Inflation-Interest-Rate-and-Exchange-Rate-Using-DSGE-VAR-Model.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter N. Ireland, 2007. "Changes in the Federal Reserve's Inflation Target: Causes and Consequences," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(8), pages 1851-1882, December.
    2. Marco Del Negro & Frank Schorfheide, 2003. "Take your model bowling: forecasting with general equilibrium models," Economic Review, Federal Reserve Bank of Atlanta, vol. 88(Q4), pages 35-50.
    3. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers 21/13, Institute for Fiscal Studies.
    4. Raffaella Giacomini, 2013. "The Relationship Between DSGE and VAR Models," Advances in Econometrics, in: VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims, volume 32, pages 1-25, Emerald Group Publishing Limited.
    5. Dmitry Kreptsev & Sergei Seleznev, 2018. "Forecasting for the Russian Economy Using Small-Scale DSGE Models," Russian Journal of Money and Finance, Bank of Russia, vol. 77(2), pages 51-67, June.
    6. Pop, Raluca-Elena, 2017. "A small-scale DSGE-VAR model for the Romanian economy," Economic Modelling, Elsevier, vol. 67(C), pages 1-9.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Lubik, Thomas A. & Schorfheide, Frank, 2007. "Do central banks respond to exchange rate movements? A structural investigation," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1069-1087, May.
    9. Демешев Борис Борисович & Малаховская Оксана Анатольевна, 2016. "Макроэкономическое Прогнозирование С Помощью Bvar Литтермана," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(4), pages 691-710.
    10. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
    11. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    12. Sergey Slobodyan & Raf Wouters, 2012. "Learning in a Medium-Scale DSGE Model with Expectations Based on Small Forecasting Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(2), pages 65-101, April.
    13. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lees, Kirdan & Matheson, Troy & Smith, Christie, 2011. "Open economy forecasting with a DSGE-VAR: Head to head with the RBNZ published forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 512-528, April.
    2. Martinez-Martin Jaime & Morris Richard & Onorante Luca & Piersanti Fabio Massimo, 2024. "Merging Structural and Reduced-Form Models for Forecasting," The B.E. Journal of Macroeconomics, De Gruyter, vol. 24(1), pages 399-437, January.
    3. Franke, Reiner & Jang, Tae-Seok & Sacht, Stephen, 2015. "Moment matching versus Bayesian estimation: Backward-looking behaviour in a New-Keynesian baseline model," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 126-154.
    4. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    5. Kirdan Lees & Troy Matheson & Christie Smith, 2007. "Open Economy Dsge-Var Forecasting And Policy Analysis: Head To Head With The Rbnz Published Forecasts," CAMA Working Papers 2007-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Tatiana Kirsanova & Stephanus le Roux, 2013. "Commitment vs. Discretion in the UK: An Empirical Investigation of the Monetary and Fiscal Policy Regime," International Journal of Central Banking, International Journal of Central Banking, vol. 9(4), pages 99-152, December.
    7. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    8. Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2016. "Exploiting the monthly data flow in structural forecasting," Journal of Monetary Economics, Elsevier, vol. 84(C), pages 201-215.
    9. Carlos Garcia & Wildo Gonzalez, 2014. "Why does monetary policy respond to the real exchange rate in small open economies? A Bayesian perspective," Empirical Economics, Springer, vol. 46(3), pages 789-825, May.
    10. Pablo A. Guerrón-Quintana & James M. Nason, 2013. "Bayesian estimation of DSGE models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 21, pages 486-512, Edward Elgar Publishing.
    11. García, Carlos J. & González, Wildo D., 2013. "Exchange rate intervention in small open economies: The role of risk premium and commodity price shocks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 424-447.
    12. Stelios D. Bekiros & Alessia Paccagnini, 2016. "Policy‐Oriented Macroeconomic Forecasting with Hybrid DGSE and Time‐Varying Parameter VAR Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 613-632, November.
    13. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    14. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
    15. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    16. Yi-Hua Wu & Chih-Chin Ho & Eric S. Lin, 2017. "Measuring the Impact of Military Spending: How Far Does a DSGE Model Deviate from Reality?," Defence and Peace Economics, Taylor & Francis Journals, vol. 28(5), pages 585-608, September.
    17. Kolasa, Marcin & Rubaszek, Michał, 2015. "Forecasting using DSGE models with financial frictions," International Journal of Forecasting, Elsevier, vol. 31(1), pages 1-19.
    18. Carlos Garcia & Wildo Gonzalez, 2010. "Is more exchange rate intervention necessary in small open economies? The role of risk premium and commodity shocks," ILADES-UAH Working Papers inv248, Universidad Alberto Hurtado/School of Economics and Business.
    19. Castelnuovo, Efrem, 2016. "Modest macroeconomic effects of monetary policy shocks during the great moderation: An alternative interpretation," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 300-314.
    20. Mu-Chun Wang, 2009. "Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 167-182.

    More about this item

    Keywords

    forecasting; DSGE-VAR; DSGE; BVAR; Russian economy;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:82:y:2023:i:3:p:62-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.