IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v79y2020i1p57-73.html
   My bibliography  Save this article

Forecasting Inflation in Russia Using Neural Networks

Author

Listed:
  • Evgeny Pavlov

    (New Economic School)

Abstract

Forecasting Russian inflation is an important practical task. This paper applies two benchmark machine learning models to this task. Although machine learning in general has been an active area of research for the past 20 years, those methods began gaining popularity in the literature on inflation forecasting only recently. In this paper, I employ neural networks and support-vector machines to forecast inflation in Russia. I also apply Shapley decomposition to obtain economic interpretation of inflation forecasts. The performance of these two models is then compared with the performance of more conventional approaches that serve as benchmark forecasts. These are an autoregression and a linear regression with regularisation (a.k.a. ridge regression). My empirical findings suggest that both machine learning models forecast inflation no worse than the conventional benchmarks and that the Shapley decomposition is a suitable framework that yields a meaningful interpretation to the neural network forecast. I conclude that machine learning methods offer a promising tool of inflation forecasting.

Suggested Citation

  • Evgeny Pavlov, 2020. "Forecasting Inflation in Russia Using Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 57-73, March.
  • Handle: RePEc:bkr:journl:v:79:y:2020:i:1:p:57-73
    DOI: 10.31477/rjmf.202001.57
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/iblock/5c2/Forecasting-Inflation-Neural-Networks.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.31477/rjmf.202001.57?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
    2. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    3. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    4. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    5. Joseph, Andreas, 2019. "Parametric inference with universal function approximators," Bank of England working papers 784, Bank of England, revised 22 Jul 2020.
    6. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    7. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    8. Andreas Joseph, 2019. "From interpretability to inference: an estimation framework for universal approximators," Papers 1903.04209, arXiv.org, revised Dec 2024.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tretyakov, Dmitriy & Fokin, Nikita, 2020. "Помогают Ли Высокочастотные Данные В Прогнозировании Российской Инфляции? [Does the high-frequency data is helpful for forecasting Russian inflation?]," MPRA Paper 109556, University Library of Munich, Germany.
    2. Shibanov, O., 2024. "Lessons for the central banks: Inflation in 2021-2023," Journal of the New Economic Association, New Economic Association, vol. 62(1), pages 240-245.
    3. Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    4. Vadim Grishchenko & Ivan Krylov, 2024. "New Approaches to Measuring, Analysing, and Forecasting Prices: A Review of the Bank of Russia, NES, and HSE University Workshop," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 92-111, June.
    5. Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Papers 2401.00249, arXiv.org, revised Jul 2024.
    6. Urmat Dzhunkeev, 2024. "Forecasting Inflation in Russia Using Gradient Boosting and Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 53-76, March.
    7. Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
    8. Oleg Semiturkin & Andrey Shevelev, 2023. "Correct Comparison of Predictive Features of Machine Learning Models: The Case of Forecasting Inflation Rates in Siberia," Russian Journal of Money and Finance, Bank of Russia, vol. 82(1), pages 87-103, March.
    9. Rodion Latypov & Elena Akhmedova & Egor Postolit & Marina Mikitchuk, 2024. "Bottom-up Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 23-44, September.
    10. Viacheslav Kramkov, 2023. "Does CPI disaggregation improve inflation forecast accuracy?," Bank of Russia Working Paper Series wps112, Bank of Russia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirko Moscatelli & Simone Narizzano & Fabio Parlapiano & Gianluca Viggiano, 2019. "Corporate default forecasting with machine learning," Temi di discussione (Economic working papers) 1256, Bank of Italy, Economic Research and International Relations Area.
    2. Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
    3. Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023. "Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach," Journal of International Economics, Elsevier, vol. 145(C).
    4. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    5. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    6. Michael Dotsey & Shigeru Fujita & Tom Stark, 2018. "Do Phillips Curves Conditionally Help to Forecast Inflation?," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
    7. Filippos Petroulakis, 2023. "Task Content and Job Losses in the Great Lockdown," ILR Review, Cornell University, ILR School, vol. 76(3), pages 586-613, May.
    8. Marco Del Negro & Marc P. Giannoni & Frank Schorfheide, 2015. "Inflation in the Great Recession and New Keynesian Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 168-196, January.
    9. Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021. "Comparing minds and machines: implications for financial stability," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
    10. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    11. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    12. Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
    13. Hannes Mueller & Christopher Rauh, 2022. "The Hard Problem of Prediction for Conflict Prevention," Journal of the European Economic Association, European Economic Association, vol. 20(6), pages 2440-2467.
    14. Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
    15. Altug, Sumru & Çakmaklı, Cem, 2016. "Forecasting inflation using survey expectations and target inflation: Evidence for Brazil and Turkey," International Journal of Forecasting, Elsevier, vol. 32(1), pages 138-153.
    16. Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
    17. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    18. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    19. Carlos León & Fabio Ortega, 2018. "Nowcasting Economic Activity with Electronic Payments Data: A Predictive Modeling Approach," Revista de Economía del Rosario, Universidad del Rosario, vol. 21(2), pages 381-407, December.
    20. Arai, Natsuki, 2023. "The FOMC’s new individual economic projections and macroeconomic theories," Journal of Banking & Finance, Elsevier, vol. 151(C).
    21. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.

    More about this item

    Keywords

    inflation forecast; machine learning; ridge regression; neural networks; support-vector machines;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:79:y:2020:i:1:p:57-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.