Forecasting Inflation in Russia Using Neural Networks
Author
Abstract
Suggested Citation
DOI: 10.31477/rjmf.202001.57
Download full text from publisher
References listed on IDEAS
- Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
- James H. Stock & Mark W. Watson, 2008.
"Phillips curve inflation forecasts,"
Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
- James H. Stock & Mark W. Watson, 2008. "Phillips Curve Inflation Forecasts," NBER Working Papers 14322, National Bureau of Economic Research, Inc.
- Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
- Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
- Joseph, Andreas, 2019. "Parametric inference with universal function approximators," Bank of England working papers 784, Bank of England, revised 22 Jul 2020.
- Andreas Joseph, 2019. "From interpretability to inference: an estimation framework for universal approximators," Papers 1903.04209, arXiv.org, revised Dec 2024.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mihaela Simionescu, 2025. "Machine Learning vs. Econometric Models to Forecast Inflation Rate in Romania? The Role of Sentiment Analysis," Mathematics, MDPI, vol. 13(1), pages 1-18, January.
- Tretyakov, Dmitriy & Fokin, Nikita, 2020. "Помогают Ли Высокочастотные Данные В Прогнозировании Российской Инфляции? [Does the high-frequency data is helpful for forecasting Russian inflation?]," MPRA Paper 109556, University Library of Munich, Germany.
- Shibanov, O., 2024. "Lessons for the central banks: Inflation in 2021-2023," Journal of the New Economic Association, New Economic Association, vol. 62(1), pages 240-245.
- Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
- Vadim Grishchenko & Ivan Krylov, 2024. "New Approaches to Measuring, Analysing, and Forecasting Prices: A Review of the Bank of Russia, NES, and HSE University Workshop," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 92-111, June.
- Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Papers 2401.00249, arXiv.org, revised Jul 2024.
- Urmat Dzhunkeev, 2024. "Forecasting Inflation in Russia Using Gradient Boosting and Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 53-76, March.
- Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
- Oleg Semiturkin & Andrey Shevelev, 2023. "Correct Comparison of Predictive Features of Machine Learning Models: The Case of Forecasting Inflation Rates in Siberia," Russian Journal of Money and Finance, Bank of Russia, vol. 82(1), pages 87-103, March.
- Rodion Latypov & Elena Akhmedova & Egor Postolit & Marina Mikitchuk, 2024. "Bottom-up Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 23-44, September.
- Viacheslav Kramkov, 2023. "Does CPI disaggregation improve inflation forecast accuracy?," Bank of Russia Working Paper Series wps112, Bank of Russia.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
- Mirko Moscatelli & Simone Narizzano & Fabio Parlapiano & Gianluca Viggiano, 2019. "Corporate default forecasting with machine learning," Temi di discussione (Economic working papers) 1256, Bank of Italy, Economic Research and International Relations Area.
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023.
"Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach,"
Journal of International Economics, Elsevier, vol. 145(C).
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kang, Miao & Kapadia, Sujit & Simsek, Özgür, 2020. "Credit growth, the yield curve and financial crisis prediction: evidence from a machine learning approach," Bank of England working papers 848, Bank of England.
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2021. "Credit growth, the yield curve and financial crisis prediction: evidence from a machine learning approach," Working Paper Series 2614, European Central Bank.
- repec:zbw:bofitp:2019_008 is not listed on IDEAS
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Filippos Petroulakis, 2023.
"Task Content and Job Losses in the Great Lockdown,"
ILR Review, Cornell University, ILR School, vol. 76(3), pages 586-613, May.
- Petroulakis, Filippos, 2020. "Task content and job losses in the Great Lockdown," GLO Discussion Paper Series 702, Global Labor Organization (GLO).
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023.
"Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2020. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Papers 2011.07920, arXiv.org, revised Feb 2022.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," Post-Print emse-04624940, HAL.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Allon Hammer & Noam Koenigstein, 2021. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Bank of Israel Working Papers 2021.06, Bank of Israel.
- Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
- Altug, Sumru & Çakmaklı, Cem, 2016.
"Forecasting inflation using survey expectations and target inflation: Evidence for Brazil and Turkey,"
International Journal of Forecasting, Elsevier, vol. 32(1), pages 138-153.
- Altug, Sumru & Çakmaklı, Cem, 2015. "Forecasting Inflation using Survey Expectations and Target Inflation: Evidence for Brazil and Turkey," CEPR Discussion Papers 10419, C.E.P.R. Discussion Papers.
- Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
- McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020.
"Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend,"
Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
- Stephen McKnight & Alexander Mihailov & Kerry Patterson & Fabio Rumler, 2014. "The Predictive Performance of Fundamental Inflation Concepts: An Application to the Euro Area and the United States," Economics Discussion Papers em-dp2014-03, Department of Economics, University of Reading.
- Stephen McKnight & Alexander Mihailov & Fabio Rumler, 2018. "NKPC-Based Inflation Forecasts with a Time-Varying Trend," Serie documentos de trabajo del Centro de Estudios Económicos 2018-05, El Colegio de México, Centro de Estudios Económicos.
- Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021.
"Comparing minds and machines: implications for financial stability,"
Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
- Buckmann, Marcus & Haldane, Andy & Hüser, Anne-Caroline, 2021. "Comparing minds and machines: implications for financial stability," Bank of England working papers 937, Bank of England.
- Arai, Natsuki, 2023.
"The FOMC’s new individual economic projections and macroeconomic theories,"
Journal of Banking & Finance, Elsevier, vol. 151(C).
- Natsuki Arai, 2020. "The FOMC’s New Individual Economic Projections and Macroeconomic Theories," Working Papers 2020-007, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Michael Puglia & Adam Tucker, 2020. "Machine Learning, the Treasury Yield Curve and Recession Forecasting," Finance and Economics Discussion Series 2020-038, Board of Governors of the Federal Reserve System (U.S.).
- Emanuel Kohlscheen, 2021.
"What does machine learning say about the drivers of inflation?,"
BIS Working Papers
980, Bank for International Settlements.
- Emanuel Kohlscheen, 2022. "What does machine learning say about the drivers of inflation?," Papers 2208.14653, arXiv.org, revised Jan 2023.
- Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
- Emanuel Kohlscheen, 2022.
"Quantifying the Role of Interest Rates, the Dollar and Covid in Oil Prices,"
Papers
2208.14254, arXiv.org, revised Oct 2022.
- Emanuel Kohlscheen, 2022. "Quantifying the role of interest rates, the Dollar and Covid in oil prices," BIS Working Papers 1040, Bank for International Settlements.
- Sumru Altug & Cem Cakmakli, 2014. "Inflation Targeting and Inflation Expectations: Evidence for Brazil and Turkey," Koç University-TUSIAD Economic Research Forum Working Papers 1413, Koc University-TUSIAD Economic Research Forum.
- Funke, Michael & Tsang, Andrew, 2019.
"The direction and intensity of China's monetary policy conduct: A dynamic factor modelling approach,"
BOFIT Discussion Papers
8/2019, Bank of Finland Institute for Emerging Economies (BOFIT).
- Funke, Michael & Tsang, Andrew, 2019. "The direction and intensity of China’s monetary policy conduct : A dynamic factor modelling approach," BOFIT Discussion Papers 8/2019, Bank of Finland, Institute for Economies in Transition.
- Carlos León & Fabio Ortega, 2018.
"Nowcasting Economic Activity with Electronic Payments Data: A Predictive Modeling Approach,"
Revista de Economía del Rosario, Universidad del Rosario, vol. 21(2), pages 381-407, December.
- Carlos León & Fabio Ortega, 2018. "Nowcasting economic activity with electronic payments data: A predictive modeling approach," Borradores de Economia 1037, Banco de la Republica de Colombia.
More about this item
Keywords
inflation forecast; machine learning; ridge regression; neural networks; support-vector machines;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:79:y:2020:i:1:p:57-73. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.