IDEAS home Printed from https://ideas.repec.org/p/bis/biswps/1040.html
   My bibliography  Save this paper

Quantifying the role of interest rates, the Dollar and Covid in oil prices

Author

Listed:
  • Emanuel Kohlscheen

Abstract

This study analyses oil price movements through the lens of an agnostic random forest model, which is based on 1,000 regression trees. It shows that this highly disciplined, yet flexible computational model reduces in-sample root mean square errors (RMSEs) by 65% relative to a standard linear least square model that uses the same set of 11 explanatory factors. In forecasting exercises the RMSE reduction ranges between 51% and 68%, highlighting the relevance of non-linearities in oil markets. The results underscore the importance of incorporating financial factors into oil models: US interest rates, the dollar and the VIX together account for 39% of the models' RMSE reduction in the post-2010 sample, rising to 48% in the post-2020 sample. If Covid-19 is also considered as a risk factor, these shares become even larger.

Suggested Citation

  • Emanuel Kohlscheen, 2022. "Quantifying the role of interest rates, the Dollar and Covid in oil prices," BIS Working Papers 1040, Bank for International Settlements.
  • Handle: RePEc:bis:biswps:1040
    as

    Download full text from publisher

    File URL: https://www.bis.org/publ/work1040.pdf
    File Function: Full PDF document
    Download Restriction: no

    File URL: https://www.bis.org/publ/work1040.htm
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    2. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    3. Christiane Baumeister & Lutz Kilian, 2016. "Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 139-160, Winter.
    4. Selien De Schryder & Gert Peersman, 2016. "The U.S. Dollar Exchange Rate and the Demand for Oil," The Energy Journal, , vol. 37(1), pages 90-114, January.
    5. Christiane Baumeister & Lutz Kilian, 2014. "What Central Bankers Need To Know About Forecasting Oil Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
    6. Mohaddes, Kamiar & Pesaran, M. Hashem, 2017. "Oil prices and the global economy: Is it different this time around?," Energy Economics, Elsevier, vol. 65(C), pages 315-325.
    7. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    8. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    9. Kilian, Lutz & Zhou, Xiaoqing, 2018. "Modeling fluctuations in the global demand for commodities," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 54-78.
    10. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    11. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    12. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    13. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
    14. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    15. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    16. Avalos, Fernando, 2014. "Do oil prices drive food prices? The tale of a structural break," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 253-271.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    2. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    3. Benk, Szilard & Gillman, Max, 2023. "Identifying money and inflation expectation shocks to real oil prices," Energy Economics, Elsevier, vol. 126(C).
    4. Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
    5. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    6. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    7. Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
    8. Celso Brunetti & Marc Joëts & Valérie Mignon, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," Working Papers 2023-19, CEPII research center.
    9. Valenti, Daniele & Bastianin, Andrea & Manera, Matteo, 2023. "A weekly structural VAR model of the US crude oil market," Energy Economics, Elsevier, vol. 121(C).
    10. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    11. Raghavan, Mala, 2020. "An analysis of the global oil market using SVARMA models," Energy Economics, Elsevier, vol. 86(C).
    12. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    13. Jiménez-Rodríguez, Rebeca, 2022. "Oil shocks and global economy," Energy Economics, Elsevier, vol. 115(C).
    14. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
    15. Emanuel Kohlscheen, 2021. "What does machine learning say about the drivers of inflation?," BIS Working Papers 980, Bank for International Settlements.
    16. Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.
    17. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    18. Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
    19. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    20. Georges, Christophre & Pereira, Javier, 2021. "Market stability with machine learning agents," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).

    More about this item

    Keywords

    dollar; forecasting; machine learning; oil; risk.;
    All these keywords.

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • F30 - International Economics - - International Finance - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bis:biswps:1040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Fessler (email available below). General contact details of provider: https://edirc.repec.org/data/bisssch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.