New Approaches to Measuring, Analysing, and Forecasting Prices: A Review of the Bank of Russia, NES, and HSE University Workshop
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
- Olivier Armantier & Wändi Bruine de Bruin & Simon Potter & Giorgio Topa & Wilbert van der Klaauw & Basit Zafar, 2013. "Measuring Inflation Expectations," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 273-301, May.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Forecasting euro area inflation with machine-learning models," Research Bulletin, European Central Bank, vol. 112.
- Francesco D’Acunto & Ulrike Malmendier & Juan Ospina & Michael Weber, 2021. "Exposure to Grocery Prices and Inflation Expectations," Journal of Political Economy, University of Chicago Press, vol. 129(5), pages 1615-1639.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "DMARIANO: RATS procedure to compute Diebold-Mariano Forecast Comparison Test," Statistical Software Components RTS00055, Boston College Department of Economics.
- Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023.
"Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
- Gustavo Silva Araujo & Wagner Piazza Gaglianone, 2022. "Machine Learning Methods for Inflation Forecasting in Brazil: new contenders versus classical models," Working Papers Series 561, Central Bank of Brazil, Research Department.
- Stefano DellaVigna & Matthew Gentzkow, 2019.
"Uniform Pricing in U.S. Retail Chains,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 2011-2084.
- Stefano DellaVigna & Matthew Gentzkow, 2017. "Uniform Pricing in US Retail Chains," NBER Working Papers 23996, National Bureau of Economic Research, Inc.
- A. P. Lerner, 1934. "The Concept of Monopoly and the Measurement of Monopoly Power," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 1(3), pages 157-175.
- Di, Wenhua & Pattison, Nathaniel, 2023. "Industry Specialization and Small Business Lending," Journal of Banking & Finance, Elsevier, vol. 149(C).
- Maliar, Lilia & Maliar, Serguei & Winant, Pablo, 2021. "Deep learning for solving dynamic economic models," Journal of Monetary Economics, Elsevier, vol. 122(C), pages 76-101.
- Evgeny Pavlov, 2020. "Forecasting Inflation in Russia Using Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 57-73, March.
- Joel Dyer & Patrick Cannon & J. Doyne Farmer & Sebastian Schmon, 2022.
"Black-box Bayesian inference for economic agent-based models,"
Papers
2202.00625, arXiv.org.
- Farmer, J. Doyne & Dyer, Joel & Cannon, Patrick & Schmon, Sebastian, 2022. "Black-box Bayesian inference for economic agent-based models," INET Oxford Working Papers 2022-05, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Helder Ferreira de Mendonça & João Pedro Neves Maia, 2022. "Interest rate expectations based on Taylor rule versus central bank’s survey: which performs better in a large emerging economy?," Applied Economics, Taylor & Francis Journals, vol. 54(39), pages 4532-4544, August.
- Rodion Latypov & Elena Akhmedova & Egor Postolit & Marina Mikitchuk, 2024. "Bottom-up Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 23-44, September.
- Chua, Chew Lian & Tsiaplias, Sarantis, 2024. "The influence of supermarket prices on consumer inflation expectations," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 414-433.
- Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
- Yuchen Zhang & Shigeyuki Hamori, 2020. "The Predictability of the Exchange Rate When Combining Machine Learning and Fundamental Models," JRFM, MDPI, vol. 13(3), pages 1-16, March.
- Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013.
"Modelling long-run trends and cycles in financial time series data,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
- Guglielmo Maria Caporale & Juncal Cunado & Luis A. Gil-Alana, 2008. "Modelling Long-Run Trends and Cycles in Financial Time Series Data," CESifo Working Paper Series 2330, CESifo.
- Luis A. Gil-Alana & Juncal Cuñado & Guglielmo Maria Caporale, 2012. "Modelling Long Run Trends and Cycles in Financial Time Series Data," Faculty Working Papers 13/12, School of Economics and Business Administration, University of Navarra.
- Carlo Altavilla & Paul De Grauwe, 2010.
"Forecasting and combining competing models of exchange rate determination,"
Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
- Carlo Altavilla & Paul De Grauwe, 2006. "Forecasting and Combining Competing Models of Exchange rate Determination," Discussion Papers 5_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Carlo Altavilla & Paul De Grauwe, 2006. "Forecasting and Combining Competing Models of Exchange Rate Determination," CESifo Working Paper Series 1747, CESifo.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Xiaojie Xu, 2017. "The rolling causal structure between the Chinese stock index and futures," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 491-509, November.
- Tallman, Ellis W. & Zaman, Saeed, 2020.
"Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
- Ellis W. Tallman & Saeed Zaman, 2018. "Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy," Working Papers (Old Series) 1809, Federal Reserve Bank of Cleveland.
- Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012.
"Short-run forecasting of the euro-dollar exchange rate with economic fundamentals,"
Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
- Marcos dal Bianco & Maximo Camacho & Gabriel Perez-Quiros, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Working Papers 1203, Banco de España.
- Maximo Camacho & Marcos Dal Bianco & Gabriel Perez Quiros, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Working Papers 1201, BBVA Bank, Economic Research Department.
- Daniel Buncic, 2012.
"Understanding forecast failure of ESTAR models of real exchange rates,"
Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
- Buncic, Daniel, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," MPRA Paper 16526, University Library of Munich, Germany.
- Buncic, Daniel, 2009. "Understanding forecast failure in ESTAR models of real exchange rates," MPRA Paper 13121, University Library of Munich, Germany.
- Daniel Buncic, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," EERI Research Paper Series EERI_RP_2009_18, Economics and Econometrics Research Institute (EERI), Brussels.
- Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
- Máximo Camacho & Rafael Doménech, 2012.
"MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting,"
SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
- Maximo Camacho & Rafael Domenech, 2010. "MICA-BBVA: A Factor Model of Economic and Financial Indicators for Short-term GDP Forecasting," Working Papers 1021, BBVA Bank, Economic Research Department.
- Keen Meng Choy & Hwee Kwan Chow, 2004.
"Forecasting the Global Electronics Cycle with Leading Indicators: A VAR Approach,"
Econometric Society 2004 Australasian Meetings
223, Econometric Society.
- Hwee Kwan Chow & Keen Meng Choy, 2004. "Forecasting the Global Electronics Cycle with Leading Indicators: A VAR Approach," Working Papers 16-2004, Singapore Management University, School of Economics.
- Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Crump, Richard K. & Eusepi, Stefano & Tambalotti, Andrea & Topa, Giorgio, 2022.
"Subjective intertemporal substitution,"
Journal of Monetary Economics, Elsevier, vol. 126(C), pages 118-133.
- Richard K. Crump & Stefano Eusepi & Andrea Tambalotti & Giorgio Topa, 2015. "Subjective Intertemporal Substitution," Staff Reports 734, Federal Reserve Bank of New York.
- Stefano Eusepi & Giorgio Topa & Andrea Tambalotti & Richard Crump, 2016. "Subjective Intertemporal Substitution," 2016 Meeting Papers 83, Society for Economic Dynamics.
- Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016.
"Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting,"
Hannover Economic Papers (HEP)
dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Robinson Kruse & Christian Leschinski & Michael Will, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," CREATES Research Papers 2016-17, Department of Economics and Business Economics, Aarhus University.
- Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017.
"The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey,"
Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
- Mogliani, M. & Brunhes-Lesage, V. & Darné, O. & Pluyaud, B., 2014. "New estimate of the MIBA forecasting model. Modeling first-release GDP using the Banque de France's Monthly Business Survey and the “blocking” approach," Working papers 473, Banque de France.
More about this item
Keywords
inflation; inflation expectations; structural transformation; machine learning;All these keywords.
JEL classification:
- E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
- E50 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - General
- D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:83:y:2024:i:2:p:92-111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.