IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v84y2025i1p93-104.html
   My bibliography  Save this article

Using LSTM Neural Networks for Nowcasting and Forecasting GVA of Industrial Sectors

Author

Listed:
  • Oleg Kryzhanovskiy

    (Bank of Russia; Tyumen State University)

  • Anastasia Mogilat

    (Bank of Russia)

  • Zhanna Shuvalova

    (Bank of Russia)

  • Dmitry Gvozdev

    (HSE University)

Abstract

This paper evaluates the potential application of long short-term memory (LSTM) neural networks for economic forecasting. We compare the accuracy of short-term forecasts of the gross value added of industrial sectors obtained using an LSTM model against several benchmarks, such as a random walk model, an autoregressive integrated moving average model, and an approximate dynamic factor model. Compared to the other models, the LSTM model demonstrates a lower mean absolute forecast error in 16 out of 18 cases and a lower root mean square error in 13 out of 18 cases.

Suggested Citation

  • Oleg Kryzhanovskiy & Anastasia Mogilat & Zhanna Shuvalova & Dmitry Gvozdev, 2025. "Using LSTM Neural Networks for Nowcasting and Forecasting GVA of Industrial Sectors," Russian Journal of Money and Finance, Bank of Russia, vol. 84(1), pages 93-104, March.
  • Handle: RePEc:bkr:journl:v:84:y:2025:i:1:p:93-104
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/iblock/089/4rgxi7zeruwecj0e00eykrvkxcz0glol/Using-LSTM-Neural-Networks-Forecasting-GVA-Industrial-Sectors.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Urmat Dzhunkeev, 2024. "Forecasting Inflation in Russia Using Gradient Boosting and Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 53-76, March.
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    4. Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022. "A neural network ensemble approach for GDP forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    5. Porshakov, A. & Ponomarenko, A. & Sinyakov, A., 2016. "Nowcasting and Short-Term Forecasting of Russian GDP with a Dynamic Factor Model," Journal of the New Economic Association, New Economic Association, vol. 30(2), pages 60-76.
    6. Evgeny Pavlov, 2020. "Forecasting Inflation in Russia Using Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 57-73, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    2. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    3. Paolo Fornaro & Henri Luomaranta, 2020. "Nowcasting Finnish real economic activity: a machine learning approach," Empirical Economics, Springer, vol. 58(1), pages 55-71, January.
    4. Konstantin S. Rybak, 2023. "Анализ Важности Глобальных Факторов Для Наукастинга Ввп," Russian Economic Development (in Russian), Gaidar Institute for Economic Policy, issue 12, pages 18-23, December.
    5. Chris Heaton & Natalia Ponomareva & Qin Zhang, 2020. "Forecasting models for the Chinese macroeconomy: the simpler the better?," Empirical Economics, Springer, vol. 58(1), pages 139-167, January.
    6. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    7. Konstantin S. Rybak, 2023. "Evaluating the Role of Global Factors in GDP Nowcasting [Анализ Важности Глобальных Факторов Для Наукастинга Ввп]," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 18-23, December.
    8. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    9. Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
    10. Daniel Armeanu & Jean Vasile Andrei & Leonard Lache & Mirela Panait, 2017. "A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    11. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.
    12. Dmytro Krukovets, 2024. "Exploring an LSTM-SARIMA routine for core inflation forecasting," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 2(2(76)), pages 6-12, April.
    13. Evžen Kočenda & Karen Poghosyan, 2020. "Nowcasting Real GDP Growth: Comparison between Old and New EU Countries," Eastern European Economics, Taylor & Francis Journals, vol. 58(3), pages 197-220, May.
    14. Peña, Daniel & Smucler, Ezequiel & Yohai, Victor J., 2021. "Sparse estimation of dynamic principal components for forecasting high-dimensional time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1498-1508.
    15. Fernández-Avilés, Gema & Mattera, Raffaele & Scepi, Germana, 2024. "Factor-Augmented Autoregressive Neural Network to forecast NOx in the city of Madrid," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    16. Jokubaitis, Saulius & Celov, Dmitrij & Leipus, Remigijus, 2021. "Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run," International Journal of Forecasting, Elsevier, vol. 37(2), pages 759-776.
    17. Anastasia Mogilat & Oleg Kryzhanovskiy & Zhanna Shuvalova & Yaroslav Murashov, 2024. "DYFARUS: Dynamic Factor Model to Forecast GDP by Output Using Input-Output Tables," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 3-25, June.
    18. Juan José Echavarría & Andrés González, 2012. "Choques internacionales reales y financieros y su impacto sobre la economía colombiana," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(69), pages 14-66, December.
    19. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    20. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.

    More about this item

    Keywords

    GDP; GVA; neural networks; long short-term memory network; nowcasting; forecasting;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:84:y:2025:i:1:p:93-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.