IDEAS home Printed from https://ideas.repec.org/p/boe/boeewp/0784.html
   My bibliography  Save this paper

Parametric inference with universal function approximators

Author

Listed:
  • Joseph, Andreas

    (Bank of England)

Abstract

Universal function approximators, such as artificial neural networks, can learn a large variety of target functions arbitrarily well given sufficient training data. This flexibility comes at the cost of the ability to perform parametric inference. We address this gap by proposing a generic framework based on the Shapley-Taylor decomposition of a model. A surrogate parametric regression analysis is performed in the space spanned by the Shapley value expansion of a model. This allows for the testing of standard hypotheses of interest. At the same time, the proposed approach provides novel insights into statistical learning processes themselves derived from the consistency and bias properties of the nonparametric estimators. We apply the framework to the estimation of heterogeneous treatment effects in simulated and real-world randomised experiments. We introduce an explicit treatment function based on higher-order Shapley-Taylor indices. This can be used to identify potentially complex treatment channels and help the generalisation of findings from experimental settings. More generally, the presented approach allows for a standardised use and communication of results from machine learning models.

Suggested Citation

  • Joseph, Andreas, 2019. "Parametric inference with universal function approximators," Bank of England working papers 784, Bank of England, revised 22 Jul 2020.
  • Handle: RePEc:boe:boeewp:0784
    as

    Download full text from publisher

    File URL: https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2019/shapley-regressions-a-framework-for-statistical-inference-on-machine-learning-models.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    2. David Aikman & Mirta Galesic & Gerd Gigerenzer & Sujit Kapadia & Konstantinos Katsikopoulos & Amit Kothiyal & Emma Murphy & Tobias Neumann, 2021. "Taking uncertainty seriously: simplicity versus complexity in financial regulation [Uncertainty in macroeconomic policy-making: art or science?]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(2), pages 317-345.
    3. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    4. Andreas Fuster & Paul Goldsmith‐Pinkham & Tarun Ramadorai & Ansgar Walther, 2022. "Predictably Unequal? The Effects of Machine Learning on Credit Markets," Journal of Finance, American Finance Association, vol. 77(1), pages 5-47, February.
    5. Okui Ryo, 2014. "Asymptotically Unbiased Estimation of Autocovariances and Autocorrelations with Panel Data in the Presence of Individual and Time Effects," Journal of Time Series Econometrics, De Gruyter, vol. 6(2), pages 129-181, July.
    6. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    7. Aikman, David & Galesic, Mirta & Gigerenzer, Gerd & Kapadia, Sujit & Katsikopoulos, Konstantinos & Kothiyal, Amit & Murphy, Emma & Neumann, Tobias, 2014. "Financial Stability Paper No 28: Taking uncertainty seriously - simplicity versus complexity in financial regulation," Bank of England Financial Stability Papers 28, Bank of England.
    8. Monica Andini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Viola Salvestrini, 2017. "Targeting policy-compliers with machine learning: an application to a tax rebate programme in Italy," Temi di discussione (Economic working papers) 1158, Bank of Italy, Economic Research and International Relations Area.
    9. ., 2017. "Econometric analysis: loopholes and shortcomings," Chapters, in: Econometrics as a Con Art, chapter 5, pages 88-105, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Micocci & Armando Rungi, 2021. "Predicting Exporters with Machine Learning," Papers 2107.02512, arXiv.org, revised Sep 2022.
    2. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    3. Evgeny Pavlov, 2020. "Forecasting Inflation in Russia Using Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 57-73, March.
    4. Michael Puglia & Adam Tucker, 2020. "Machine Learning, the Treasury Yield Curve and Recession Forecasting," Finance and Economics Discussion Series 2020-038, Board of Governors of the Federal Reserve System (U.S.).
    5. Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021. "Comparing minds and machines: implications for financial stability," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
    6. Filippos Petroulakis, 2023. "Task Content and Job Losses in the Great Lockdown," ILR Review, Cornell University, ILR School, vol. 76(3), pages 586-613, May.
    7. Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023. "Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach," Journal of International Economics, Elsevier, vol. 145(C).
    8. Mirko Moscatelli & Simone Narizzano & Fabio Parlapiano & Gianluca Viggiano, 2019. "Corporate default forecasting with machine learning," Temi di discussione (Economic working papers) 1256, Bank of Italy, Economic Research and International Relations Area.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023. "Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach," Journal of International Economics, Elsevier, vol. 145(C).
    2. Amadxarif, Zahid & Brookes, James & Garbarino, Nicola & Patel, Rajan & Walczak, Eryk, 2019. "The language of rules: textual complexity in banking reforms," Bank of England working papers 834, Bank of England.
    3. Popoyan, Lilit & Napoletano, Mauro & Roventini, Andrea, 2017. "Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 117-140.
    4. Baron, Opher & Callen, Jeffrey L. & Segal, Dan, 2023. "Does the bullwhip matter economically? A cross-sectional firm-level analysis," International Journal of Production Economics, Elsevier, vol. 259(C).
    5. repec:hal:spmain:info:hdl:2441/5bnglqth5987gaq6dhju3psjn3 is not listed on IDEAS
    6. Francesco Lamperti & Antoine Mandel & Mauro Napoletano & Alessandro Sapio & Andrea Roventini & Tomas Balint & Igor Khorenzhenko, 2017. "Taming macroeconomic instability," SciencePo Working papers Main hal-03399574, HAL.
    7. William Forbes & Egor Kiselev & Len Skerratt, 2023. "The stability and downside risk to contrarian profits: Evidence from the S&P 500," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 733-750, January.
    8. Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
    9. Lilit Popoyan, 2020. "Macroprudential Policy: a Blessing or a Curse?," Review of Economics and Institutions, Università di Perugia, vol. 11(1-2).
    10. David Tucket & Antoine Mandel & Diana Mangalagiu & Allen Abramson & Jochen Hinkel & Konstantinos Katsikopoulos & Alan Kirman & Thierry Malleret & Igor Mozetic & Paul Ormerod & Robert Elliot Smith & To, 2015. "Uncertainty, Decision Science, and Policy Making: A Manifesto for a Research Agenda," SciencePo Working papers Main hal-02057279, HAL.
    11. repec:hal:pseose:hal-02057279 is not listed on IDEAS
    12. Ben-Haim, Yakov & Demertzis, Maria & Van den End, Jan Willem, 2018. "Evaluating monetary policy rules under fundamental uncertainty: An info-gap approach," Economic Modelling, Elsevier, vol. 73(C), pages 55-70.
    13. Brighton, Henry, 2020. "Statistical foundations of ecological rationality," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-32.
    14. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    15. Popoyan, Lilit & Napoletano, Mauro & Roventini, Andrea, 2020. "Winter is possibly not coming: Mitigating financial instability in an agent-based model with interbank market," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    16. Yakov Ben-Haim & Maria Demertzis & Jan Willem van den End, 2017. "Fundamental uncertainty and unconventional monetary policy- an info-gap approach," Working Papers 19317, Bruegel.
    17. Andrew G. Haldane & Arthur E. Turrell, 2019. "Drawing on different disciplines: macroeconomic agent-based models," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 39-66, March.
    18. repec:spo:wpmain:info:hdl:2441/5bnglqth5987gaq6dhju3psjn3 is not listed on IDEAS
    19. Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
    20. repec:spo:wpmain:info:hdl:2441/1j4v8sl4fc9a49ankmnhv6bb6a is not listed on IDEAS
    21. Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
    22. Schmitt, Matthias & Schmaltz, Christian, 2016. "Potential implications of a NSFR on German banks' credit supply and profitability," Discussion Papers 37/2016, Deutsche Bundesbank.
    23. Marco Migueis, 2019. "Evaluating the AMA and the new standardized approach for operational risk capital," Journal of Banking Regulation, Palgrave Macmillan, vol. 20(4), pages 302-311, December.
    24. repec:spo:wpmain:info:hdl:2441/5hussro0tc951q0jqpu8quliqu is not listed on IDEAS
    25. Nathaniel D. Phillips & Hansjörg Neth & Jan K. Woike & Wolfgang Gaissmaier, 2017. "FFTrees: A toolbox to create, visualize, and evaluate fast-and-frugal decision trees," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(4), pages 344-368, July.

    More about this item

    Keywords

    Machine learning; statistical inference; Shapley values; numerical simulations; macroeconomics; time series;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:0784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Media Team (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.