Improved customer choice predictions using ensemble methods
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hu, Michael Y. & Tsoukalas, Christos, 2003. "Explaining consumer choice through neural networks: The stacked generalization approach," European Journal of Operational Research, Elsevier, vol. 146(3), pages 650-660, May.
- Gurumurthy Kalyanaram & Russell S. Winer, 1995. "Empirical Generalizations from Reference Price Research," Marketing Science, INFORMS, vol. 14(3_supplem), pages 161-169.
- Franses,Philip Hans & Paap,Richard, 2010.
"Quantitative Models in Marketing Research,"
Cambridge Books,
Cambridge University Press, number 9780521143653, January.
- Franses,Philip Hans & Paap,Richard, 2001. "Quantitative Models in Marketing Research," Cambridge Books, Cambridge University Press, number 9780521801669, September.
- Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
- Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- van Wezel, Michiel & Potharst, Rob, 2007. "Improved customer choice predictions using ensemble methods," European Journal of Operational Research, Elsevier, vol. 181(1), pages 436-452, August.
- Todor Krastevich, 2013. "Using Predictive Modeling to Improve Direct Marketing Performance," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 3, pages 25-55.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- van Wezel, Michiel & Potharst, Rob, 2007. "Improved customer choice predictions using ensemble methods," European Journal of Operational Research, Elsevier, vol. 181(1), pages 436-452, August.
- Polo, Yolanda & Sese, F. Javier & Verhoef, Peter C., 2011. "The Effect of Pricing and Advertising on Customer Retention in a Liberalizing Market," Journal of Interactive Marketing, Elsevier, vol. 25(4), pages 201-214.
- Priya Jha-Dang, 2006. "A Review of Psychological Research on Consumer Promotions and a New Perspective Based on Mental Accounting," Vision, , vol. 10(3), pages 35-43, July.
- Necati Tereyağoğlu & Peter S. Fader & Senthil Veeraraghavan, 2018. "Multiattribute Loss Aversion and Reference Dependence: Evidence from the Performing Arts Industry," Management Science, INFORMS, vol. 64(1), pages 421-436, January.
- Kamel Jedidi & Carl F. Mela & Sunil Gupta, 1999. "Managing Advertising and Promotion for Long-Run Profitability," Marketing Science, INFORMS, vol. 18(1), pages 1-22.
- repec:hum:wpaper:sfb649dp2005-057 is not listed on IDEAS
- Hruschka, Harald & Fettes, Werner & Probst, Markus, 2004. "An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications," European Journal of Operational Research, Elsevier, vol. 159(1), pages 166-180, November.
- Kopalle, Praveen K. & Kannan, P.K. & Boldt, Lin Bao & Arora, Neeraj, 2012. "The impact of household level heterogeneity in reference price effects on optimal retailer pricing policies," Journal of Retailing, Elsevier, vol. 88(1), pages 102-114.
- Dawes, John G., 2012. "Brand-Pack Size Cannibalization Arising from Temporary Price Promotions," Journal of Retailing, Elsevier, vol. 88(3), pages 343-355.
- Elshiewy, Ossama & Peschel, Anne O., 2022. "Internal reference price response across store formats," Journal of Retailing, Elsevier, vol. 98(3), pages 496-509.
- Jean-Pierre Dubé, 2004. "Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks," Marketing Science, INFORMS, vol. 23(1), pages 66-81, September.
- Robert Kapłon, 2006. "A retrospective review of categorical data analysis – theory and marketing practice," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(1), pages 55-72.
- Vroomen, Bjorn & Hans Franses, Philip & van Nierop, Erjen, 2004.
"Modeling consideration sets and brand choice using artificial neural networks,"
European Journal of Operational Research, Elsevier, vol. 154(1), pages 206-217, April.
- Vroomen, B.L.K. & Franses, Ph.H.B.F. & van Nierop, J.E.M., 2001. "Modeling Consideration Sets and Brand Choice Using Artificial Neural Networks," ERIM Report Series Research in Management ERS-2001-10-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- David R. Bell & James M. Lattin, 2000. "Looking for Loss Aversion in Scanner Panel Data: The Confounding Effect of Price Response Heterogeneity," Marketing Science, INFORMS, vol. 19(2), pages 185-200, May.
- Tülin Erdem & Michael Katz & Baohong Sun, 2010. "A simple test for distinguishing between internal reference price theories," Quantitative Marketing and Economics (QME), Springer, vol. 8(3), pages 303-332, September.
- Alam Kazmi, Syed Hasnain, 2015. "Developments in Promotion Strategies Review on Psychological Streams of Consumers," MPRA Paper 65424, University Library of Munich, Germany, revised 05 May 2015.
- Irani-Kermani, Roozbeh & Jaenicke, Edward C., 2017. "Accommodating Heterogeneity in Brand Loyalty Estimation: Application to the U.S. Beer Retail," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258203, Agricultural and Applied Economics Association.
- Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
- Moon, Sangkil & Voss, Glenn, 2009. "How do price range shoppers differ from reference price point shoppers?," Journal of Business Research, Elsevier, vol. 62(1), pages 31-38, January.
- Potharst, R. & van Rijthoven, M. & van Wezel, M.C., 2005. "Modeling brand choice using boosted and stacked neural networks," Econometric Institute Research Papers EI 2005-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Teck H. Ho & Noah Lim & Colin Camerer, 2005. "Modeling the Psychology of Consumer and Firm Behavior with Behavioral Economics," Levine's Bibliography 784828000000000476, UCLA Department of Economics.
More about this item
Keywords
Bagging; Bias/Variance decomposition; CART; boosting; brand choice; choice models; data mining; ensembles;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1943. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.