IDEAS home Printed from https://ideas.repec.org/r/tpr/restat/v81y1999i4p617-631.html
   My bibliography  Save this item

Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Paresh Kumar Narayan & Sagarika Mishra & Seema Narayan, 2015. "New empirical evidence on the bid-ask spread," Applied Economics, Taylor & Francis Journals, vol. 47(42), pages 4484-4500, September.
  2. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
  3. Gallant, A. Ronald & Tauchen, George, 2002. "Simulated Score Methods and Indirect Inference for Continuous-time Models," Working Papers 02-09, Duke University, Department of Economics.
  4. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
  5. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
  6. Wang, Chou-Wen & Wu, Chin-Wen & Tzang, Shyh-Weir, 2012. "Implementing option pricing models when asset returns follow an autoregressive moving average process," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 8-25.
  7. Huber, Christoph & Huber, Jürgen & Kirchler, Michael, 2021. "Market shocks and professionals’ investment behavior – Evidence from the COVID-19 crash," Journal of Banking & Finance, Elsevier, vol. 133(C).
  8. Gordon R. Richards, 2004. "A fractal forecasting model for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 586-601.
  9. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
  10. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
  11. Narayan, Paresh Kumar & Mishra, Sagarika & Sharma, Susan & Liu, Ruipeng, 2013. "Determinants of stock price bubbles," Economic Modelling, Elsevier, vol. 35(C), pages 661-667.
  12. Lakshmi Padmakumari & S. Maheswaran, 2018. "Covariance estimation using random permutations," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
  13. Ahn, Dong-Hyun & Dittmar, Robert F. & Gallant, A. Ronald & Gao, Bin, 2003. "Purebred or hybrid?: Reproducing the volatility in term structure dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 147-180.
  14. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
  15. Yin-Wong Cheung, 2007. "An empirical model of daily highs and lows," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 1-20.
  16. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
  17. Gilles Dufrenot & Dominique Guegan & Anne Peguin-Feissolle, 2008. "Changing-regime volatility: a fractionally integrated SETAR model," Applied Financial Economics, Taylor & Francis Journals, vol. 18(7), pages 519-526.
  18. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
  19. (Jeremy) Chiu, Ching-wai & Harris, Richard D.F. & Stoja, Evarist & Chin, Michael, 2018. "Financial market Volatility, macroeconomic fundamentals and investor Sentiment," Journal of Banking & Finance, Elsevier, vol. 92(C), pages 130-145.
  20. Yang-Ho Park, 2019. "Variance Disparity and Market Frictions," Finance and Economics Discussion Series 2019-059, Board of Governors of the Federal Reserve System (U.S.).
  21. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
  22. Jeonggyu Huh & Jaegi Jeon & Yong-Ki Ma, 2020. "Static Hedges of Barrier Options Under Fast Mean-Reverting Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 185-210, January.
  23. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
  24. Yin Liao, 2012. "Does Modeling Jumps Help? A Comparison of Realized Volatility Models for Risk Prediction," CAMA Working Papers 2012-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  25. Lorenzo Lucchini & Laura Alessandretti & Bruno Lepri & Angela Gallo & Andrea Baronchelli, 2020. "From code to market: Network of developers and correlated returns of cryptocurrencies," Papers 2004.07290, arXiv.org, revised Dec 2020.
  26. Hjalmarsson, Erik, 2003. "Does the Black-Scholes formula work for electricity markets? A nonparametric approach," Working Papers in Economics 101, University of Gothenburg, Department of Economics.
  27. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
  28. Proietti, Tommaso, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," MPRA Paper 57230, University Library of Munich, Germany.
  29. Yuta Kurose, 2021. "Stochastic volatility model with range-based correction and leverage," Papers 2110.00039, arXiv.org, revised Oct 2021.
  30. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
  31. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  32. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
  33. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
  34. Yang-Ho Park, 2015. "The Effects of Asymmetric Volatility and Jumps on the Pricing of VIX Derivatives," Finance and Economics Discussion Series 2015-71, Board of Governors of the Federal Reserve System (U.S.).
  35. Stanislav Khrapov, 2011. "Pricing Central Tendency in Volatility," Working Papers w0168, New Economic School (NES).
  36. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
  37. Chauvet, Marcelle & Senyuz, Zeynep & Yoldas, Emre, 2015. "What does financial volatility tell us about macroeconomic fluctuations?," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 340-360.
  38. Sui, Guo & Li, Huajiao & Feng, Sida & Liu, Xueyong & Jiang, Meihui, 2018. "Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1501-1512.
  39. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
  40. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
  41. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
  42. Matteo Bonato & Massimiliano Caporin & Angelo Ranaldo, 2009. "Forecasting realized (co)variances with a block structure Wishart autoregressive model," Working Papers 2009-03, Swiss National Bank.
  43. Liesenfeld, Roman, 2001. "A generalized bivariate mixture model for stock price volatility and trading volume," Journal of Econometrics, Elsevier, vol. 104(1), pages 141-178, August.
  44. Suk Joon Byun & Jung‐Soon Hyun & Woon Jun Sung, 2021. "Estimation of stochastic volatility and option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(3), pages 349-360, March.
  45. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
  46. Venetis, Ioannis A. & Peel, David, 2005. "Non-linearity in stock index returns: the volatility and serial correlation relationship," Economic Modelling, Elsevier, vol. 22(1), pages 1-19, January.
  47. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  48. Arouxet, M. Belén & Bariviera, Aurelio F. & Pastor, Verónica E. & Vampa, Victoria, 2022. "Covid-19 impact on cryptocurrencies: Evidence from a wavelet-based Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  49. Grassi, Stefano & Santucci de Magistris, Paolo, 2015. "It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
  50. Sang Byung Seo & Jessica A. Wachter, 2013. "Option Prices in a Model with Stochastic Disaster Risk," NBER Working Papers 19611, National Bureau of Economic Research, Inc.
  51. Liao, Yin, 2013. "The benefit of modeling jumps in realized volatility for risk prediction: Evidence from Chinese mainland stocks," Pacific-Basin Finance Journal, Elsevier, vol. 23(C), pages 25-48.
  52. Jeon, Jaegi & Kim, Geonwoo & Huh, Jeonggyu, 2021. "An asymptotic expansion approach to the valuation of vulnerable options under a multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  53. David T. L. Siu & John Okunev, 2009. "Forecasting exchange rate volatility: a multiple horizon comparison using historical, realized and implied volatility measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 465-486.
  54. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
  55. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
  56. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
  57. Chan, Kam C. & Fung, Hung-Gay & Leung, Wai K., 2004. "Daily volatility behavior in Chinese futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(5), pages 491-505, December.
  58. Richards, Gordon R., 2000. "Reconciling econophysics with macroeconomic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(1), pages 325-335.
  59. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
  60. Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.
  61. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
  62. Marina Theodosiou, 2010. "Calendar Time Sampling of High Frequency Financial Asset Price and the Verdict on Jumps," Working Papers 2010-7, Central Bank of Cyprus.
  63. Jeremy Lin & Alessio Saretto & Anastasia Shcherbakova, 2024. "What Fuels the Volatility of Electricity Prices?," Working Papers 2408, Federal Reserve Bank of Dallas.
  64. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
  65. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  66. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
  67. Huber, Christoph & Huber, Jürgen & Kirchler, Michael, 2022. "Volatility shocks and investment behavior," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 56-70.
  68. See-Woo Kim & Yong-Ki Ma & Ciprian Necula, 2023. "Modeling Tail Dependence Using Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 129-147, June.
  69. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
  70. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
  71. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
  72. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
  73. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  74. Harris, Richard D.F. & Stoja, Evarist & Yilmaz, Fatih, 2011. "A cyclical model of exchange rate volatility," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3055-3064, November.
  75. Bollerslev, Tim & Li, Jia & Li, Qiyuan, 2024. "Optimal nonparametric range-based volatility estimation," Journal of Econometrics, Elsevier, vol. 238(1).
  76. D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  77. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
  78. Coppejans, Mark & Gallant, A. Ronald, 2002. "Cross-validated SNP density estimates," Journal of Econometrics, Elsevier, vol. 110(1), pages 27-65, September.
  79. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
  80. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
  81. Igor Kliakhandler, 2007. "Execution edge of pit traders and intraday price ranges of soft commodities," Applied Financial Economics, Taylor & Francis Journals, vol. 17(5), pages 343-350.
  82. Alessandra Amendola & Vincenzo Candila & Antonio Scognamillo, 2017. "On the influence of US monetary policy on crude oil price volatility," Empirical Economics, Springer, vol. 52(1), pages 155-178, February.
  83. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
  84. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
  85. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
  86. Park, Yang-Ho, 2020. "Variance disparity and market frictions," Journal of Econometrics, Elsevier, vol. 214(2), pages 326-348.
  87. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
  88. Zitis, Pavlos I. & Contoyiannis, Yiannis & Potirakis, Stelios M., 2022. "Critical dynamics related to a recent Bitcoin crash," International Review of Financial Analysis, Elsevier, vol. 84(C).
  89. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
  90. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
  91. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  92. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
  93. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
  94. Angela He & Alan Wan, 2009. "Predicting daily highs and lows of exchange rates: a cointegration analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1191-1204.
  95. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
  96. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
  97. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2019. "Consistent and Efficient Pricing of SPX and VIX Options under Multiscale Stochastic Volatility," Papers 1909.10187, arXiv.org.
  98. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
  99. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
  100. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
  101. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
  102. Giampiero M. Gallo & Yongmiao Hong & Tae-Why Lee, 2001. "Modelling the Impact of Overnight Surprises on Intra-daily Stock Returns," Econometrics Working Papers Archive wp2001_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  103. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
  104. Bjoern Schulte-Tillman & Mawuli Segnon & Bernd Wilfling, 2022. "Financial-market volatility prediction with multiplicative Markov-switching MIDAS components," CQE Working Papers 9922, Center for Quantitative Economics (CQE), University of Muenster.
  105. Sin, Chor-Yiu (CY), 2013. "Using CARRX models to study factors affecting the volatilities of Asian equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 552-564.
  106. Dufrenot, Gilles & Guegan, Dominique & Peguin-Feissolle, Anne, 2005. "Modelling squared returns using a SETAR model with long-memory dynamics," Economics Letters, Elsevier, vol. 86(2), pages 237-243, February.
  107. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
  108. Peter Hansen & Asger Lunde, 2003. "Consistent Preordering with an Estimated Criterion Function, with an Application to the Evaluation and Comparison of Volatility Models," Working Papers 2003-01, Brown University, Department of Economics.
  109. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
  110. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
  111. Jean Jacod & Yingying Li & Per A. Mykland & Mark Podolskij & Mathias Vetter, 2007. "Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9," CREATES Research Papers 2007-43, Department of Economics and Business Economics, Aarhus University.
  112. Mehmet Ali Balcı & Larissa M. Batrancea & Ömer Akgüller & Lucian Gaban & Mircea-Iosif Rus & Horia Tulai, 2022. "Fractality of Borsa Istanbul during the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(14), pages 1-33, July.
  113. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.
  114. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2021. "Consistent and efficient pricing of SPX and VIX options under multiscale stochastic volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 559-576, May.
  115. Luca Vincenzo Ballestra & Enzo D'Innocenzo & Christian Tezza, 2024. "A GARCH model with two volatility components and two driving factors," Papers 2410.14585, arXiv.org.
  116. Tauchen, George, 2001. "Notes on financial econometrics," Journal of Econometrics, Elsevier, vol. 100(1), pages 57-64, January.
  117. Michael W. Brandt & Qiang Kang, 2002. "On the Relationship Between the Conditional Mean and Volatility of Stock Returns: A Latent VAR Approach," NBER Working Papers 9056, National Bureau of Economic Research, Inc.
  118. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
  119. Chan, Leo & Lien, Donald, 2003. "Using high, low, open, and closing prices to estimate the effects of cash settlement on futures prices," International Review of Financial Analysis, Elsevier, vol. 12(1), pages 35-47.
  120. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
  121. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
  122. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.
  123. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
  124. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.