IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp1501-1512.html
   My bibliography  Save this article

Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios

Author

Listed:
  • Sui, Guo
  • Li, Huajiao
  • Feng, Sida
  • Liu, Xueyong
  • Jiang, Meihui

Abstract

The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.

Suggested Citation

  • Sui, Guo & Li, Huajiao & Feng, Sida & Liu, Xueyong & Jiang, Meihui, 2018. "Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1501-1512.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:1501-1512
    DOI: 10.1016/j.physa.2017.08.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117308786
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dewandaru, Ginanjar & Rizvi, Syed Aun R. & Masih, Rumi & Masih, Mansur & Alhabshi, Syed Othman, 2014. "Stock market co-movements: Islamic versus conventional equity indices with multi-timescales analysis," Economic Systems, Elsevier, vol. 38(4), pages 553-571.
    2. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Huang, Xuan, 2015. "Identifying the multiscale impacts of crude oil price shocks on the stock market in China at the sector level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 13-24.
    3. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    4. Challe, Edouard & Giannitsarou, Chryssi, 2014. "Stock prices and monetary policy shocks: A general equilibrium approach," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 46-66.
    5. Phylaktis, Kate & Ravazzolo, Fabiola, 2005. "Stock prices and exchange rate dynamics," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1031-1053, November.
    6. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    7. An, Feng & Gao, Xiangyun & Guan, Jianhe & Huang, Shupei & Liu, Qian, 2017. "Modeling the interdependent network based on two-mode networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 57-67.
    8. Jia, Xiaoliang & An, Haizhong & Sun, Xiaoqi & Huang, Xuan & Gao, Xiangyun, 2016. "Finding the multipath propagation of multivariable crude oil prices using a wavelet-based network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 331-344.
    9. Huang, Xuan & An, Haizhong & Gao, Xiangyun & Hao, Xiaoqing & Liu, Pengpeng, 2015. "Multiresolution transmission of the correlation modes between bivariate time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 493-506.
    10. Tiwari, Aviral Kumar & Oros, Cornel & Albulescu, Claudiu Tiberiu, 2014. "Revisiting the inflation–output gap relationship for France using a wavelet transform approach," Economic Modelling, Elsevier, vol. 37(C), pages 464-475.
    11. Li, Huajiao & An, Haizhong & Huang, Jiachen & Huang, Xuan & Mou, Songtao & Shi, Yanli, 2016. "The evolutionary stability of shareholders’ co-holding behavior for China’s listed energy companies based on associated maximal connected sub-graphs of derivative holding-based networks," Applied Energy, Elsevier, vol. 162(C), pages 1601-1607.
    12. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
    13. Silvo Dajčman, 2013. "Interdependence Between Some Major European Stock Markets - A Wavelet Lead/Lag Analysis," Prague Economic Papers, Prague University of Economics and Business, vol. 2013(1), pages 28-49.
    14. Chiang, Thomas C. & Jeon, Bang Nam & Li, Huimin, 2007. "Dynamic correlation analysis of financial contagion: Evidence from Asian markets," Journal of International Money and Finance, Elsevier, vol. 26(7), pages 1206-1228, November.
    15. Gao, Xiangyun & Fang, Wei & An, Feng & Wang, Yue, 2017. "Detecting method for crude oil price fluctuation mechanism under different periodic time series," Applied Energy, Elsevier, vol. 192(C), pages 201-212.
    16. Wang, Minggang & Tian, Lixin & Du, Ruijin, 2016. "Research on the interaction patterns among the global crude oil import dependency countries: A complex network approach," Applied Energy, Elsevier, vol. 180(C), pages 779-791.
    17. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    18. Jia, Xiaoliang & An, Haizhong & Fang, Wei & Sun, Xiaoqi & Huang, Xuan, 2015. "How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective," Energy Economics, Elsevier, vol. 49(C), pages 588-598.
    19. Boryana Bogdanova & Ivan Ivanov, 2016. "A wavelet-based approach to the analysis and modelling of financial time series exhibiting strong long-range dependence: the case of Southeast Europe," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 655-673, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xiaohong & Huang, Shupei, 2020. "Identifying the comovement of price between China's and international crude oil futures: A time-frequency perspective," International Review of Financial Analysis, Elsevier, vol. 72(C).
    2. Qi, Yajie & Li, Huajiao & Liu, Yanxin & Feng, Sida & Li, Yang & Guo, Sui, 2020. "Granger causality transmission mechanism of steel product prices under multiple scales—The industrial chain perspective," Resources Policy, Elsevier, vol. 67(C).
    3. Luo, Yi & Li, Xiaoming & Yu, Wei & Huang, Kun & Yang, Yihe & Huang, Yao, 2024. "Research on human dynamics characteristics under large-scale stock data perturbation," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    4. Yajie Qi & Huajiao Li & Sui Guo & Sida Feng, 2019. "Dynamic Transmission of Correlation between Investor Attention and Stock Price: Evidence from China’s Energy Industry Typical Stocks," Complexity, Hindawi, vol. 2019, pages 1-15, December.
    5. Wang, Ze & Gao, Xiangyun & An, Haizhong & Tang, Renwu & Sun, Qingru, 2020. "Identifying influential energy stocks based on spillover network," International Review of Financial Analysis, Elsevier, vol. 68(C).
    6. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    7. Zhou, Yang & Xie, Chi & Wang, Gang-Jin & Zhu, You & Uddin, Gazi Salah, 2023. "Analysing and forecasting co-movement between innovative and traditional financial assets based on complex network and machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Qingru & Gao, Xiangyun & An, Haizhong & Guo, Sui & Liu, Xueyong & Wang, Ze, 2021. "Which time-frequency domain dominates spillover in the Chinese energy stock market?," International Review of Financial Analysis, Elsevier, vol. 73(C).
    2. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2017. "Do oil price asymmetric effects on the stock market persist in multiple time horizons?," Applied Energy, Elsevier, vol. 185(P2), pages 1799-1808.
    3. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    4. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
    5. Chen, Weidong & Xiong, Shi & Chen, Quanyu, 2022. "Characterizing the dynamic evolutionary behavior of multivariate price movement fluctuation in the carbon-fuel energy markets system from complex network perspective," Energy, Elsevier, vol. 239(PA).
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    7. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    8. Yin-Wong Cheung, 2007. "An empirical model of daily highs and lows," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 1-20.
    9. Guangyong Zhang & Lixin Tian & Wenbin Zhang & Xu Yan & Bingyue Wan & Zaili Zhen, 2020. "A Study on the Similarities and Differences of the Conventional Gasoline Spot Price Fluctuation Network between Different Harbors," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    10. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    11. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    12. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    13. Lakshmi Padmakumari & S. Maheswaran, 2018. "Covariance estimation using random permutations," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
    14. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    15. Yu, Hui & Ding, Yinghui & Sun, Qingru & Gao, Xiangyun & Jia, Xiaoliang & Wang, Xinya & Guo, Sui, 2021. "Multi-scale comovement of the dynamic correlations between copper futures and spot prices," Resources Policy, Elsevier, vol. 70(C).
    16. Feng, Sida & Huang, Shupei & Qi, Yabin & Liu, Xueyong & Sun, Qingru & Wen, Shaobo, 2018. "Network features of sector indexes spillover effects in China: A multi-scale view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 461-473.
    17. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    18. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
    19. Huang, Shupei & An, Haizhong & Wen, Shaobo & An, Feng, 2017. "Revisiting driving factors of oil price shocks across time scales," Energy, Elsevier, vol. 139(C), pages 617-629.
    20. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Huang, Xuan, 2016. "Time–frequency featured co-movement between the stock and prices of crude oil and gold," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 985-995.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:1501-1512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.