IDEAS home Printed from https://ideas.repec.org/p/hhs/gunwpe/0101.html
   My bibliography  Save this paper

Does the Black-Scholes formula work for electricity markets? A nonparametric approach

Author

Listed:
  • Hjalmarsson, Erik

    (Department of Economics, School of Economics and Commercial Law, Göteborg University)

Abstract

Despite the high volatilities recorded for electricity prices, there seems to be little demand for options on electricity. One reason for the disinterest in electricity options could arise from uncertainty about how to price these options. This study uses recent econometric advances to nonparametrically estimate correct prices for electricity options and compare these to the Black-Scholes prices. The main finding is that although the nonparametric estimates deviate significantly from the Black-Scholes prices, it would be diffcult to find an alternative parametric model that performs better. Thus, from a practical viewpoint, the Black-Scholes prices appear to be the best available.

Suggested Citation

  • Hjalmarsson, Erik, 2003. "Does the Black-Scholes formula work for electricity markets? A nonparametric approach," Working Papers in Economics 101, University of Gothenburg, Department of Economics.
  • Handle: RePEc:hhs:gunwpe:0101
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2077/2809
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    2. Bandi, Federico M. & Moloche, Guillermo, 2018. "On The Functional Estimation Of Multivariate Diffusion Processes," Econometric Theory, Cambridge University Press, vol. 34(4), pages 896-946, August.
    3. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    4. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    5. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    6. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    7. Malcolm P. Baker & E. Scott Mayfield & John E. Parsons, 1998. "Alternative Models of Uncertain Commodity Prices for Use with Modern Asset Pricing Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 115-148.
    8. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    9. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
    10. Sanjiv R. Das, 1998. "Poisson-Guassian Processes and the Bond Markets," NBER Working Papers 6631, National Bureau of Economic Research, Inc.
    11. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(1), pages 53-65, March.
    12. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Twomey & Karsten Neuhoff, 2005. "Market Power and Technological Bias: The Case of Electricity Generation," Working Papers EPRG 0501, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, August.
    3. Ghaffari, Reza & Venkatesh, Bala, 2015. "Network constrained model for options based reserve procurement by wind generators using binomial tree," Renewable Energy, Elsevier, vol. 80(C), pages 348-358.
    4. Twomey, Paul & Neuhoff, Karsten, 2010. "Wind power and market power in competitive markets," Energy Policy, Elsevier, vol. 38(7), pages 3198-3210, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Bonsoo Koo & Oliver Linton, 2010. "Semiparametric Estimation of Locally Stationary Diffusion Models," STICERD - Econometrics Paper Series 551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Aït-Sahalia, Yacine & Park, Joon Y., 2012. "Stationarity-based specification tests for diffusions when the process is nonstationary," Journal of Econometrics, Elsevier, vol. 169(2), pages 279-292.
    4. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    5. Fornari, Fabio & Mele, Antonio, 2001. "Recovering the probability density function of asset prices using garch as diffusion approximations," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 83-110, March.
    6. Hao Zhou, 2001. "Jump-diffusion term structure and Ito conditional moment generator," Finance and Economics Discussion Series 2001-28, Board of Governors of the Federal Reserve System (U.S.).
    7. Eric Ghysels & Serena Ng, 1998. "A Semiparametric Factor Model Of Interest Rates And Tests Of The Affine Term Structure," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 535-548, November.
    8. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    9. Bandi, Federico M. & Phillips, Peter C.B., 2007. "A simple approach to the parametric estimation of potentially nonstationary diffusions," Journal of Econometrics, Elsevier, vol. 137(2), pages 354-395, April.
    10. Fabian Mies & Ansgar Steland, 2019. "Nonparametric Gaussian inference for stable processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 525-555, October.
    11. Viviana Fernández, 1999. "Estructura de Tasas de Interés en Chile: La Vía No Paramétrica," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(109), pages 1005-1034.
    12. Frances Shaw & Finbarr Murphy & Fergal G. O’Brien, 2016. "Jumps in Euribor and the effect of ECB monetary policy announcements," Environment Systems and Decisions, Springer, vol. 36(2), pages 142-157, June.
    13. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    14. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, August.
    15. Christopher T. Downing, 1999. "Nonparametric Estimation of Multifactor Continuous Time Interest-Rate Models," Computing in Economics and Finance 1999 111, Society for Computational Economics.
    16. Matthew Pritsker, 1997. "Nonparametric density estimation and tests of continuous time interest rate models," Finance and Economics Discussion Series 1997-26, Board of Governors of the Federal Reserve System (U.S.).
    17. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    18. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    19. Koo, Bonsoo & La Vecchia, Davide & Linton, Oliver, 2021. "Estimation of a nonparametric model for bond prices from cross-section and time series information," Journal of Econometrics, Elsevier, vol. 220(2), pages 562-588.

    More about this item

    Keywords

    Electricity markets; Nonparametric estimation; Option pricing;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunwpe:0101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jessica Oscarsson (email available below). General contact details of provider: https://edirc.repec.org/data/naiguse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.