IDEAS home Printed from https://ideas.repec.org/r/taf/emetrv/v31y2012i6p654-687.html
   My bibliography  Save this item

A Survey on Time-Varying Copulas: Specification, Simulations, and Application

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Benos, Nikos & Stavrakoudis, Athanassios, 2022. "Okun's law: Copula-based evidence from G7 countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 478-491.
  2. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
  3. Fei, Fei & Fuertes, Ana-Maria & Kalotychou, Elena, 2017. "Dependence in credit default swap and equity markets: Dynamic copula with Markov-switching," International Journal of Forecasting, Elsevier, vol. 33(3), pages 662-678.
  4. Julia Kielmann & Hans Manner & Aleksey Min, 2022. "Stock market returns and oil price shocks: A CoVaR analysis based on dynamic vine copula models," Empirical Economics, Springer, vol. 62(4), pages 1543-1574, April.
  5. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
  6. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
  7. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
  8. David Zimmer, 2015. "Time-Varying Correlation in Housing Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 51(1), pages 86-100, July.
  9. Helmut Herwartz & Simone Maxand, 2020. "Nonparametric tests for independence: a review and comparative simulation study with an application to malnutrition data in India," Statistical Papers, Springer, vol. 61(5), pages 2175-2201, October.
  10. Pérez-Rodríguez, Jorge V. & Ledesma-Rodríguez, Francisco & Santana-Gallego, María, 2015. "Testing dependence between GDP and tourism's growth rates," Tourism Management, Elsevier, vol. 48(C), pages 268-282.
  11. Johannes Kaufmann & Philipp Artur Kienscherf & Wolfgang Ketter, 2020. "Modeling and Managing Joint Price and Volumetric Risk for Volatile Electricity Portfolios," Energies, MDPI, vol. 13(14), pages 1-19, July.
  12. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.
  13. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
  14. Bingduo Yang & Zongwu Cai & Christian M. Hafner & Guannan Liu, 2018. "Trending Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201809, University of Kansas, Department of Economics, revised Sep 2018.
  15. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
  16. Martin Waltz & Abhay Kumar Singh & Ostap Okhrin, 2022. "Vulnerability-CoVaR: investigating the crypto-market," Quantitative Finance, Taylor & Francis Journals, vol. 22(9), pages 1731-1745, September.
  17. Liu, Xiaochun, 2015. "Modeling time-varying skewness via decomposition for out-of-sample forecast," International Journal of Forecasting, Elsevier, vol. 31(2), pages 296-311.
  18. Kim, Jong-Min & Jung, Hojin, 2016. "Linear time-varying regression with Copula–DCC–GARCH models for volatility," Economics Letters, Elsevier, vol. 145(C), pages 262-265.
  19. Andrew Vesper, 2012. "A time dynamic pair copula construction: with financial applications," Applied Financial Economics, Taylor & Francis Journals, vol. 22(20), pages 1697-1711, October.
  20. Berger, Theo, 2016. "On the isolated impact of copulas on risk measurement: Asimulation study," Economic Modelling, Elsevier, vol. 58(C), pages 475-481.
  21. Rahman, Md Lutfur & Troster, Victor & Uddin, Gazi Salah & Yahya, Muhammad, 2022. "Systemic risk contribution of banks and non-bank financial institutions across frequencies: The Australian experience," International Review of Financial Analysis, Elsevier, vol. 79(C).
  22. Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
  23. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
  24. Ojea Ferreiro, Javier, 2020. "Disentangling the role of the exchange rate in oil-related scenarios for the European stock market," Energy Economics, Elsevier, vol. 89(C).
  25. Bing-Yue Liu & Qiang Ji & Ying Fan, 2017. "A new time-varying optimal copula model identifying the dependence across markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 437-453, March.
  26. Wang, Haiying & Yuan, Ying & Li, Yiou & Wang, Xunhong, 2021. "Financial contagion and contagion channels in the forex market: A new approach via the dynamic mixture copula-extreme value theory," Economic Modelling, Elsevier, vol. 94(C), pages 401-414.
  27. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  28. Paul Gaskell & Frank McGroarty & Thanassis Tiropanis, 2014. "Signal Diffusion Mapping: Optimal Forecasting with Time Varying Lags," Papers 1409.6443, arXiv.org.
  29. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
  30. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
  31. Jonas Dovern & Hans Manner, 2020. "Order‐invariant tests for proper calibration of multivariate density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 440-456, June.
  32. Matteo Iacopini & Dominique Guégan, 2018. "Nonparametric Forecasting of Multivariate Probability Density Functions," Working Papers 2018:15, Department of Economics, University of Venice "Ca' Foscari".
  33. Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
  34. Ferreiro Javier Ojea, 2019. "Structural change in the link between oil and the European stock market: implications for risk management," Dependence Modeling, De Gruyter, vol. 7(1), pages 53-125, January.
  35. de Truchis, Gilles & Keddad, Benjamin, 2016. "On the risk comovements between the crude oil market and U.S. dollar exchange rates," Economic Modelling, Elsevier, vol. 52(PA), pages 206-215.
  36. Adhikari, Ramesh & Putnam, Kyle J., 2020. "Comovement in the commodity futures markets: An analysis of the energy, grains, and livestock sectors," Journal of Commodity Markets, Elsevier, vol. 18(C).
  37. Phong Nguyen & Wei-han Liu, 2017. "Time-Varying Linkage of Possible Safe Haven Assets: A Cross-Market and Cross-asset Analysis," International Review of Finance, International Review of Finance Ltd., vol. 17(1), pages 43-76, March.
  38. Lourme, Alexandre & Maurer, Frantz, 2017. "Testing the Gaussian and Student's t copulas in a risk management framework," Economic Modelling, Elsevier, vol. 67(C), pages 203-214.
  39. Amrouk, El Mamoun & Grosche, Stephanie-Carolin & Heckelei, Thomas, 2017. "An analysis of the interdependence between cash crop and staple food futures prices," Discussion Papers 265665, University of Bonn, Institute for Food and Resource Economics.
  40. Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
  41. Pedro Antonio Martín Cervantes & Salvador Cruz Rambaud & María del Carmen Valls Martínez, 2020. "An Application of the SRA Copulas Approach to Price-Volume Research," Mathematics, MDPI, vol. 8(11), pages 1-28, October.
  42. Aepli, Matthias D. & Frauendorfer, Karl & Fuess, Roland & Paraschiv, Florentina, 2015. "Multivariate Dynamic Copula Models: Parameter Estimation and Forecast Evaluation," Working Papers on Finance 1513, University of St. Gallen, School of Finance.
  43. Min, Aleksey & Czado, Claudia, 2014. "SCOMDY models based on pair-copula constructions with application to exchange rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 523-535.
  44. Manner, Hans & Rodríguez, Gabriel & Stöckler, Florian, 2024. "A changepoint analysis of exchange rate and commodity price risks for Latin American stock markets," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1385-1403.
  45. Liu, Xiaochun, 2017. "Unfolded risk-return trade-offs and links to Macroeconomic Dynamics," Journal of Banking & Finance, Elsevier, vol. 82(C), pages 1-19.
  46. Wang, Zhonglai & Liu, Jing & Yu, Shui, 2020. "Time-variant reliability prediction for dynamic systems using partial information," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  47. Joscha Beckmann & Theo Berger & Robert Czudaj, 2016. "Oil price and FX-rates dependency," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 477-488, March.
  48. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence between coffee qualities: a copula model to evaluate asymmetric responses," MPRA Paper 75994, University Library of Munich, Germany.
  49. Dovern, Jonas & Manner, Hans, 2016. "Order Invariant Evaluation of Multivariate Density Forecasts," Working Papers 0608, University of Heidelberg, Department of Economics.
  50. Emmanuel Afuecheta & Saralees Nadarajah & Stephen Chan, 2021. "A Statistical Analysis of Global Economies Using Time Varying Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1167-1194, December.
  51. Atina Ahdika & Arum Handini Primandari & Falah Novayanda Adlin, 2023. "Considering the temporal interdependence of human mobility and COVID-19 concerning Indonesia’s large-scale social distancing policies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2791-2810, June.
  52. Lei Hou & Wei Long & Qi Li, 2019. "Comovement of Home Prices: A Conditional Copula Approach," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 297-318, May.
  53. Juan Lin & Ximing Wu, 2015. "Smooth Tests of Copula Specifications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 128-143, January.
  54. Anatolyev, Stanislav & Gospodinov, Nikolay & Jamali, Ibrahim & Liu, Xiaochun, 2017. "Foreign exchange predictability and the carry trade: A decomposition approach," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 199-211.
  55. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.
  56. Julia Kielmann & Hans Manner & Aleksey Min, 2021. "Stock Market Returns and Oil Price Shocks: A CoVaR Analysis based on Dynamic Vine Copula Models," Graz Economics Papers 2021-01, University of Graz, Department of Economics.
  57. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," Working Papers halshs-01148746, HAL.
  58. Han, Yingwei & Li, Ping & Xia, Yong, 2017. "Dynamic robust portfolio selection with copulas," Finance Research Letters, Elsevier, vol. 21(C), pages 190-200.
  59. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
  60. Acar, Elif F. & Czado, Claudia & Lysy, Martin, 2019. "Flexible dynamic vine copula models for multivariate time series data," Econometrics and Statistics, Elsevier, vol. 12(C), pages 181-197.
  61. Berger, T. & Missong, M., 2014. "Financial crisis, Value-at-Risk forecasts and the puzzle of dependency modeling," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 33-38.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.