IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v145y2016icp262-265.html
   My bibliography  Save this article

Linear time-varying regression with Copula–DCC–GARCH models for volatility

Author

Listed:
  • Kim, Jong-Min
  • Jung, Hojin

Abstract

This paper provides a new linear time-varying regression with dynamic conditional correlation (DCC) estimated by Gaussian and Student-t copulas for forecasting financial volatility. Time-varying parameters will be estimated for nonparametric dependence by using copula functions with United States stock market data. We compare our model with Kim et al.’s (2016) linear time-varying regression (LTVR) with DCC–GARCH in the ex-post volatility forecast evaluations. Empirical study shows that our proposed volatility models are more efficient than the LTVR model. We also use the superior predictive ability and the reality check for data snooping. Evidence can be found supporting that our proposed model with copula functions provides superior forecasts for volatility over the LTVR model.

Suggested Citation

  • Kim, Jong-Min & Jung, Hojin, 2016. "Linear time-varying regression with Copula–DCC–GARCH models for volatility," Economics Letters, Elsevier, vol. 145(C), pages 262-265.
  • Handle: RePEc:eee:ecolet:v:145:y:2016:i:c:p:262-265
    DOI: 10.1016/j.econlet.2016.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176516302312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2016.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Robert Engle, 2004. "Risk and Volatility: Econometric Models and Financial Practice," American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
    3. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    4. West, Kenneth D. & Cho, Dongchul, 1995. "The predictive ability of several models of exchange rate volatility," Journal of Econometrics, Elsevier, vol. 69(2), pages 367-391, October.
    5. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    6. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    7. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    8. Jong-Min Kim & Hojin Jung & Li Qin, 2016. "Linear time-varying regression with a DCC-GARCH model for volatility," Applied Economics, Taylor & Francis Journals, vol. 48(17), pages 1573-1582, April.
    9. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    10. Hans Manner & Olga Reznikova, 2012. "A Survey on Time-Varying Copulas: Specification, Simulations, and Application," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 654-687, November.
    11. Bartram, Sohnke M. & Taylor, Stephen J. & Wang, Yaw-Huei, 2007. "The Euro and European financial market dependence," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1461-1481, May.
    12. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    13. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    14. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    15. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Estimating yield spreads volatility using GARCH-type models," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Sahamkhadam, Maziar & Stephan, Andreas & Östermark, Ralf, 2018. "Portfolio optimization based on GARCH-EVT-Copula forecasting models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 497-506.
    3. Indranil Ghosh & Manas K. Sanyal & R. K. Jana, 2021. "Co-movement and Dynamic Correlation of Financial and Energy Markets: An Integrated Framework of Nonlinear Dynamics, Wavelet Analysis and DCC-GARCH," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 503-527, February.
    4. Zhang, Junlong & Li, Yongping & You, Li & Huang, Guohe & Xu, Xiaomei & Wang, Xiaoya, 2022. "Optimizing effluent trading and risk management schemes considering dual risk aversion for an agricultural watershed," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Amrouk, El Mamoun & Grosche, Stephanie-Carolin & Heckelei, Thomas, 2017. "An analysis of the interdependence between cash crop and staple food futures prices," Discussion Papers 265665, University of Bonn, Institute for Food and Resource Economics.
    6. Asongu, Simplice A. & Tchamyou, Vanessa S. & Minkoua N., Jules R. & Asongu, Ndemaze & Tchamyou, Nina P., 2018. "Fighting terrorism in Africa: Benchmarking policy harmonization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1931-1957.
    7. Lin, Saiyan & Chen, Rongda & Lv, Zhihong & Zhou, Tianqing & Jin, Chenglu, 2019. "Integrated measurement of liquidity risk and market risk of company bonds based on the optimal Copula model," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    8. Bhatia, Vaneet & Das, Debojyoti & Kumar, Surya Bhushan, 2020. "Hedging effectiveness of precious metals across frequencies: Evidence from Wavelet based Dynamic Conditional Correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    9. Iwata, Kiyonori, 2021. "Are High-Quality Earnings Useful for Voting Shareholders? Evidence from the Top Executive Director Election in Japan," Working Paper Series g-1-26, Hitotsubashi University Center for Financial Research.
    10. Kenichiro Shiraya & Kanji Suzuki & Tomohisa Yamakami, 2024. "New approaches of the DCC-GARCH residual: Application to foreign exchange rates," Papers 2411.08246, arXiv.org.
    11. Wang, Yu-Min & Lin, Che-Chun & Tsai, I-Chun, 2023. "State transformation of information spillover in asset markets and effective dynamic hedging strategies," International Review of Financial Analysis, Elsevier, vol. 89(C).
    12. Akhtaruzzaman, Md & Banerjee, Ameet Kumar & Boubaker, Sabri & Moussa, Faten, 2023. "Does green improve portfolio optimisation?," Energy Economics, Elsevier, vol. 124(C).
    13. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2020. "Modeling non-normal corporate bond yield spreads by copula," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    14. Chen, Yufeng & Qu, Fang, 2019. "Leverage effect and dynamics correlation between international crude oil and China’s precious metals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    15. Hao Chen & Zhixin Liu & Yinpeng Zhang & You Wu, 2020. "The Linkages of Carbon Spot-Futures: Evidence from EU-ETS in the Third Phase," Sustainability, MDPI, vol. 12(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    3. Acar, Elif F. & Czado, Claudia & Lysy, Martin, 2019. "Flexible dynamic vine copula models for multivariate time series data," Econometrics and Statistics, Elsevier, vol. 12(C), pages 181-197.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    6. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    7. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    8. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
    9. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    10. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    11. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    12. repec:dau:papers:123456789/13359 is not listed on IDEAS
    13. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    14. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
    15. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    16. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    17. Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
    18. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    19. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    20. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    21. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    22. Aboura, Sofiane & Chevallier, Julien, 2015. "Volatility returns with vengeance: Financial markets vs. commodities," Research in International Business and Finance, Elsevier, vol. 33(C), pages 334-354.

    More about this item

    Keywords

    Volatility; Time-varying parameter; Copula; GARCH; Forecasting;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:145:y:2016:i:c:p:262-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.